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Abstract

The efficient solution of coupled PDEs/ODEs problems arising in cardiac electrophysiology is of key importance whenever
interested to study the electrical behavior of the tissue for several instances of relevant physical and/or geometrical parameters.
This poses significant challenges to reduced order modeling (ROM) techniques –such as the reduced basis method –traditionally
employed when dealing with the repeated solution of parameter dependent differential equations. Indeed, the nonlinear nature of
the problem, the presence of moving fronts in the solution, and the high sensitivity of this latter to parameter variations, make
the application of standard ROM techniques very problematic. In this paper we propose a local ROM built through a k-means
clustering in the state space of the snapshots for both the solution and the nonlinear term. Several comparisons among alternative
local ROMs on a benchmark test case show the effectivity of the proposed approach. Finally, the application to a parametrized
problem set on an idealized left-ventricle geometry shows the capability of the proposed ROM to face complex problems.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The propagation of the electrical signal through the heart cells is the main responsible of their contraction
mechanism, finally resulting in atrial and ventricular contractions. At the macroscopic level, the propagation of
electrical potentials is described by means of partial differential equations (PDEs) suitably coupled with ordinary
differential equations (ODEs); the latter describe the ionic currents in the cells, depending on a set of gating
variables [1]. For instance, coupling the so-called monodomain model for the transmembrane potential u = u(x, t)
with a phenomenological model for the ionic currents – involving a single gating variable w = w(x, t) – in a domain
Ω representing, e.g., a portion of the myocardium (or the whole left ventricle) results in the following time-dependent
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nonlinear differential system
∂u
∂t
− div(D∇u)+ Iion(u, w) = Iapp(x; t), x ∈ Ω , t ∈ (0, T )

∂w

∂t
+ g(u, w) = 0, x ∈ Ω , t ∈ (0, T )

∂u
∂n
= 0, x ∈ ∂Ω , t ∈ (0, T )

u(x, 0) = u0, w(x, 0) = w0, x ∈ Ω

(1.1)

where u represents the transmembrane potential for cardiac cells, w the recovery variable, and t a rescaled time; n
denotes the outward unit normal vector to the boundary ∂Ω , whereas Iapp is an applied current representing the initial
activation of the tissue. (1.1)1 is a nonlinear diffusion–reaction equation; the reaction term Iion and the function g
depend on both u and w, thus making the PDE and the ODE two-ways coupled. The most common choices for the
two functions Iion and g in order to efficiently reproduce the action-potential are, e.g., the FitzHugh–Nagumo [2,3],
the Aliev–Panfilov [4,5] or the Mitchell and Schaeffer model [6]. The diffusivity tensor D usually depends on the
fibers-sheet structure of the tissue, affecting conduction velocities and directions.

When a full-order model (FOM) such as, e.g., the FE method, is used, the accurate solution of such a coupled
system is computationally demanding [7–10], because (i) strong constraints on the spatial mesh size have to be taken
into account due to the propagation of very steep fronts, and (ii) very small time steps are required to capture the
fast dynamics characterizing the propagation of the electrical signal. The same is true for the electrical potential of
the atria [11]. The solution of the linear algebraic systems arising at each time step hinges upon the use of semi-
implicit methods or operator splitting-based ones for the whole coupled PDEs/ODEs problem, requiring suitable
preconditioning techniques [12–16].

1.1. The need of local reduced order models

Relying on full-order techniques is thus out of reach whenever a problem like (1.1) has to be solved many times,
by varying parameter-dependent features affecting operators and/or data. These many-query problems can occur,
for instance, when characterizing the evolution of the electrical potential for different tissue conductivity tensors D,
activation patterns Iapp, physical coefficients in the expressions of Iion and g or domains Ω possibly accounting for
inter-subject variability. Long-term relevant goals include, among others, the solution of uncertainty quantification
(UQ) problems [17–21] parameter estimation and inverse problems [22–25].

Reduced basis (RB) methods and, more generally, reduced order models (ROMs) have been deeply investigated
in the last decade and applied to a broad range of parameter dependent PDEs [26]. A possible approach to tackle
nonlinear, time-dependent PDEs relies on:

1. proper orthogonal decomposition (POD) to generate a (unique, global) lower dimensional subspace in which the
solution of the ROM problem is sought; the reduced basis is then provided by the first right singular vectors of
a matrix Su collecting snapshots of the FOM obtained for different parameter values, at different time instants;

2. Galerkin or Petrov–Galerkin projection to generate the reduced-order arrays, whence the name of, e.g., POD–
Galerkin ROM;

3. hyper-reduction techniques (such as the empirical interpolation (EIM) method, or its discrete counterpart
(DEIM) [27–30]) to speed up the evaluation of nonlinear and nonaffine1 arrays, avoiding to access the FOM
arrays and ensuring the overall ROM efficiency.

Such a global ROM strategy, however, might yield inefficient ROM approximations because of the unaffordable
large sets of global basis functions required to approximate both the solution and the nonlinear terms. This happens,
e.g., when the solutions manifold (that is, the set of all solutions of the FOM for varying parameters) is characterized
by large parameter variations, different physical regimes, or moving features such as fronts or discontinuities. This
is indeed the case of the monodomain problem (1.1), for which the transmembrane potential u is characterized by a
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