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PII: S0045-7825(18)30034-3
DOI: https://doi.org/10.1016/j.cma.2018.01.032
Reference: CMA 11752

To appear in: Comput. Methods Appl. Mech. Engrg.

Received date : 29 April 2017
Revised date : 13 January 2018
Accepted date : 17 January 2018

Please cite this article as: E.D. Sanders, M.A. Aguiló, G.H. Paulino, Multi-material continuum
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Abstract

A framework is presented for multi-material compliance minimization in the context of continuum
based topology optimization. We adopt the common approach of finding an optimal shape by solving
a series of explicit convex (linear) approximations to the volume constrained compliance minimization
problem. The dual objective associated with the linearized subproblems is a separable function of the
Lagrange multipliers and thus, the update of each design variable is dependent only on the Lagrange
multiplier of its associated volume constraint. By tailoring the ZPR design variable update scheme to
the continuum setting, each volume constraint is updated independently, in series or in parallel. This
formulation leads to a setting in which sufficiently general volume/mass constraints can be specified,
i.e., each volume/mass constraint can control either all or a subset of the candidate materials and can
control either the entire domain (global constraints) or a sub-region of the domain (local constraints).
Material interpolation schemes are investigated and coupled with the presented approach. The key ideas
presented herein are demonstrated through representative examples in 2D and 3D.
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1 Introduction

The multi-material, volume-constrained, compliance minimization problem considered here is stated (in
discretized form) as:

min
x1,...,xm

J = fTu (x1, . . . ,xm)

s.t. gj =
∑

i∈Gj

∑

e∈Ej
zei (x

k
i )V e ≤ V maxj , j = 1, . . . , Nc

0 ≤ xki ≤ 1, i = 1, . . . ,m; k = 1, . . . ,Mi

with K (x1, . . . ,xm)u (x1, . . . ,xm) = f

(1)

where x1, . . . ,xm represent m density fields defined at Mi control points in the problem domain for each of
the m candidate materials, J is the structural compliance, gj are the volume constraints, Gj is the set of
material indices associated with constraint j, Ej is the set of finite element indices associated with constraint
j, zei is the density of material i in finite element e, V e is the volume of finite element e, V maxj is the material
volume limit corresponding to constraint j, Nc is the total number of volume constraints, and K, u, and f
are the stiffness matrix, displacement vector, and force vector, respectively, of the associated elastostatics
problem that has been discretized into finite elements.
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