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Abstract

In two theorems presented herein, we prove and subsequently demonstrate in several numerical examples involving homoge-
neous deformation that for isotropic materials, hyper-elasto-plasticity models based on the multiplicative decomposition of the
deformation gradient coincide with an additive hypo-elasto-plasticity model (see Section 3.2) that employs the spin tensor based
on the modified kinetic logarithmic rate. In the absence of strain-induced anisotropy (characterized by kinematic hardening herein),
this objective stress rate coincides with the kinetic logarithmic rate recently developed by Jiao and Fish, 2017. We also show that
other well-known additive decomposition models, such as those based on the Jaumann and logarithmic rates, may considerably
deviate from the multiplicative model.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Plasticity in the finite deformation regime has been attracting considerable attention since it is one of the most
common dissipative phenomena that accompany large deformation of solids (such as metals, polymers, soils etc.).
The complexity of modeling large strain plasticity lies in the fact that large deformation of these materials usually
involves not only irreversible plastic deformation, but also simultaneous reversible elastic deformation. These two
processes with contradictory characteristics are closely coupled in an inextricable manner with geometric nonlinearity.
Quantifying elastic and plastic portions of the total finite deformation has been a subject of intensive research in both
academia and practicing world. One of the common approaches is to split the rate of deformation into elastic and
plastic parts in an additive manner [1]. Another widely recognized approach is to consider the deformation gradient
as the multiplicative product of elastic and plastic deformation gradients [2–5]. Among other noteworthy elasto-
plastic decompositions (that received somewhat lesser attention) are the additive splits of the Green–Lagrange strain
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[6–9], the logarithmic strain [10–12] and the Biot strain [13,14]. In particular, it was recently shown that an additive
decomposition of the Green–Lagrange strain indeed results from a thermodynamically consistent formulation which
is rooted in a Gibbs potential (complementary energy) based on the second Piola–Kirchhoff Stress [15,16].

The multiplicative decomposition of the deformation gradient finds its roots in the slip theory of crystals [17–19].
It has been recently shown that such a kinematic assumption is a natural result of homogenization of crystalline
slips [20,21]. Consequently, the elastic and plastic deformation gradients resulting from such a decomposition
can be considered as internal state variables and the corresponding elastoplasticity models can be formulated
in a thermodynamically consistent manner. Numerous elastoplasticity models have been developed based on the
multiplicative decomposition of the deformation gradient (see [22–38] among others). Due to their adoption of
hyperelastic relations in representing elastic response, these models are referred herein to as the multiplicative hyper-
elasto-plasticity models.

The additive split of the rate of deformation can be regarded as a direct generalization of the additive split of
the strain rate in the classical infinitesimal elastoplasticity theory. It is therefore straightforward to extend the well-
established infinitesimal theory into the large deformation regime based on this kinematic assumption [39]. Due to the
simplicity and clarity of the constitutive equations, the hypo-elasto-plasticity models have been enjoying popularity in
both the academic research (see [40–52] among others) and commercial finite element codes. In the large deformation
regime, the time derivative of stress in the infinitesimal theory is replaced with an objective stress rate in order to
ensure frame-invariance (objectivity) of the constitutive model. This typically results in a hypoelastic relation for the
representation of the elastic response. These models are thus referred herein to as the additive hypo-elasto-plasticity
models.

In principle, there exist an infinite number of ways to define the objective stress rate for the corresponding
constitutive models to be frame-invariant [53,54]. To address the multiplicity issue, an appropriate choice of the
objective stress rates is required to satisfy certain consistency requirements (other than the frame-invariance) imposed
on the additive hypo-elasto-plastic split. One of the earliest and well-known consistency requirements is the Prager’s
yield stationarity criterion [55,56]. This criterion brings about the preference of the corotational objective stress rate
formulation [57]. Consequently, corotational objective stress rates, such as the Jaumann rate and the Green–Naghdi
rate, have been widely adopted in the additive hypo-elasto-plasticity formulations. Some abnormal responses exhibited
by these models, however, suggested for the need of additional consistency conditions to further narrow down the
choice of objective stress rates. These abnormalities include the oscillatory stress response in the simple shear problem
in the context of the Jaumann rate ([58–60]; see [61,62] for a remedy combining the Jaumann rate and hyperelastic
relation) and the non-physical energy dissipation during pure elastic deformation [63,64]. As a remedy, Bruhns et
al. [44] proposed a self-consistency condition stating that an additive hypo-elasto-plasticity model should produce a
dissipation-free hyperelastic response in the absence of plastic flow. The corotational logarithmic rate [65–68] has
been accordingly proposed since a hypoelastic model with constant material stiffness can be integrated to obtain a
hyperelastic model provided that the logarithmic rate is employed [68,69]. Numerous elastoplastic constitutive models
have consequently been developed based on the logarithmic rate ([44,70–76] among others). The self-consistency
condition proposed by Bruhns et al. [44], however, may not be completely fulfilled with the logarithmic rate employed
in the additive hypo-elasto-plasticity models. It has been recently shown in the so-called unloading stress ratcheting
obstacle test [77] that non-physical energy dissipation still exists when material is subjected to elastic unloading
following yielding. It has been proved that a simple modification made to the logarithmic rate formulation, coined as
the kinetic logarithmic rate [77], fully satisfies the self-consistency requirement.

The additive hypo-elasto-plasticity models and multiplicative hyper-elasto-plasticity models are usually known
as two distinct categories of elastoplasticity models [78–81] and several comparative studies have been conducted to
investigate the difference between the two [82–84]. In these studies, several specific objective stress rates are employed
in the additive hypo-elasto-plasticity models.

In the present manuscript, it is shown that a typical multiplicative hyper-elasto-plasticity model for isotropic
materials coincides with an additive hypo-elasto-plasticity model based on the modified kinetic logarithmic stress
rate employed in the hypoelastic relation. In the absence of strain-induced anisotropy characterized by kinematic
hardening herein, the modified kinetic logarithmic stress rate reduces to the kinetic logarithmic stress rate recently
proposed in [77].

The manuscript is organized as follows. The basic kinematic definitions and relations are introduced in Section 2. In
Section 3, a summary of typical structures of multiplicative hyper-elasto-plasticity and additive hypo-elasto-plasticity
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