
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 339 (2018) 160–183
www.elsevier.com/locate/cma

A new family of projection schemes for the incompressible
Navier–Stokes equations with control of high-frequency damping
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Highlights

• Presentation of discrete model problem for assessment of projection schemes including numerical damping.
• Assertion: 2nd order accurate projection schemes do not possess high frequency damping.
• Presentation of two new methodologies based on midpoint rule and generalised-alpha method.
• The proposed schemes offer a compromise between accuracy and high-frequency damping.

Abstract

A simple spatially discrete model problem consisting of mass points and dash-pots is presented which allows for the assessment
of the properties of different projection schemes for the solution of the incompressible Navier–Stokes equations. In particular, the
temporal accuracy, the stability and the numerical damping are investigated. The present study suggests that it is not possible to
formulate a second order accurate projection/pressure-correction scheme which possesses any high-frequency damping. Motivated
by this observation two new families of projection schemes are proposed which are developed from the generalised midpoint rule
and from the generalised-α method, respectively, and offer control over high-frequency damping. Both schemes are investigated
in detail on the basis of the model problem and subsequently implemented in the context of a finite element formulation for the
incompressible Navier–Stokes equations. Comprehensive numerical studies of the flow in a lid-driven cavity and the flow around
a cylinder are presented. The observations made are in agreement with the conclusions drawn from the model problem.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

In the simulation of incompressible fluid flow, one of the main challenges is posed by the coupling of the velocity
and pressure fields through the incompressibility constraint. This has motivated the development of fractional step or
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splitting methods. These methods are based on the decoupling of the velocity–pressure system by splitting it into a
sequence of “fractional” or “segregated” solution steps. Although the general idea remains the same, this splitting has
been formulated in a number of ways over the years; often in the form of projection methods [1,2], pressure or velocity
correction methods [3–5], consistent splitting methods [6], viscosity splitting methods [7] or characteristic-based split
(CBS) methods [8], to name just a few. Arguably the most widely used fractional step methods for incompressible fluid
flow are the original projection schemes proposed independently by Chorin [1] and Temam [2,9] in the 1960s. In short,
these projection methods are based on an orthogonal projection onto a subspace of solenoidal vector fields, see [2] for
a thorough explanation. The basic idea is to acquire an intermediate velocity field (Step 1) by solving the momentum
equation without the pressure gradient, i.e. considering only viscous, inertia and convection terms, and subsequently
computing the pressure and divergence-free end-of-step velocity (Step 2). The appealing benefits of this approach
consist in smaller system matrices, dimensionally uniform solution and right hand side vectors and, importantly, the
fact that the pressure is obtained efficiently in Step 2 from solving the Poisson equation. The drawbacks of such
strategies include additional complexity in the application of the boundary conditions and most of all the introduction
of a so-called splitting error, which brings about a relative loss of temporal accuracy compared to a respective coupled
approach. Due to their semi-explicit nature, it is crucial that temporal stability and accuracy are in the focus of all
development in the area of the fractional step solution schemes.

As mentioned above, in the classical projection methods by Chorin and Temam, the intermediate velocity is
computed independently of the pressure. It is well-understood that this restricts these methods to first order accuracy
in time. If, in the first step, the pressure is approximated by the solution from the previous time step, then a pressure
increment can be computed in the second step and an overall second order accurate scheme can be formulated. This
approach is typically known as the “incremental projection” or “pressure correction” method and was first considered
in, for instance, [3,4]. It is clear that the accuracy of the pressure extrapolation used in the first step must be increased
in order to formulate a more accurate methodology. It is noted that, despite these efforts, the first order accurate
schemes are still widely used. The analysis of the properties of the different schemes is not trivial and is an active area
of research, see for instance [10–13]. The present work has multiple objectives:

1. Presentation of a discrete model problem consisting of point masses and dash-pots which allows for detailed
insight into the properties of projection schemes and is a useful tool for new development;

2. Discussion of high-frequency damping of projection schemes;
3. Presentation of two new families of projection schemes based on the generalised midpoint rule and the

generalised-α method [14].

Prior to the further explanation of the objectives, it is pointed out that the work presented in this article is relevant for
projection methods based on the finite volume as well as finite element formulations, even though Sections 3 and 4
are set in the context of the finite element method.

Objective 1 is motivated by the successful recent employment of the basic model problems in the area of the
partitioned schemes for fluid–structure interaction. Here, the analyses of appropriate spatially discrete model problems
has allowed for in-depth insight into temporal and added mass related instabilities [15–17] and is increasingly used for
new method development [18,19]. The investigation undertaken in the context of Objective 2 led to the observation
that it is impossible to formulate a projection scheme for the model problem which is second order accurate and
possesses high-frequency damping. This is an important finding which, to the best of our knowledge, has not been
reported elsewhere and which may explain why second order accurate projection schemes have generally not replaced
first order schemes. Objective 3 is the attempt to formulate a methodology which is more accurate than basic backward
Euler based projection schemes, but offers some high-frequency damping.

The beneficial role of high-frequency damping in incremental numerical solution schemes for partial differential
equations in time and space is well-known: The numerical analyst chooses the spatial and temporal discretisation
suitable for the length and time scales which are of interest and represent the main system response. Hence, a
robust methodology requires high-frequency damping to damp out the effect of the unresolved scales. In particular,
high-frequency damping allows for a larger degree of independence between the spatial and temporal resolutions,
i.e. a larger range of Courant numbers. In the context of the monolithic solution schemes for computational fluid
dynamics, the generalised-α method, which is unconditionally stable, second order accurate and offers control over
high-frequency damping, has therefore become very popular, see for instance [20–23]. It was proposed in [14] and is
related to its counterpart formulated earlier for solid dynamics in [24] (see also [25]). In the present work, a projection
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