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Highlights

• The hybrid estimator resolves unreliability of ZZ type estimators on coarse meshes.
• The hybrid estimator extends the improved ZZ estimator to higher order elements.
• The hybrid estimator is explicit and is more accurate than the residual estimator.

Abstract

This paper introduces a hybrid a posteriori error estimator for the conforming finite element method, which may be regarded as
a combination of the explicit residual and the improved ZZ error estimators. With comparable cost, the hybrid estimator is more
accurate than the residual estimator. It is shown that the hybrid estimator is reliable on all meshes, unlike estimators of the ZZ type.
Moreover, the reliability constant is independent of the jump of the diffusion coefficients for elliptic interface problems under the
monotonicity assumption of the coefficients. Finally, numerical examples confirm the robustness of the estimator with respect to
coefficient jumps and also better effectivity index compared to the residual estimator.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive mesh refinement is necessary in the discretization of partial differential equations (PDEs) in order to
handle computational challenges [1]. A posteriori error estimates play a crucial role in adaptive mesh refinement,
where one tries to estimate the error by computing quantities (called error estimators) based on numerical solution as
well as data from the underlying PDE. It is well known that the explicit residual error estimators (see, e.g., [2–6]) are
computationally inexpensive with applications to a large class of problems. Moreover, for computationally challenging
problems such as interface problems, proper weighted residual estimators (see, e.g., [5,7]) generate efficient meshes.
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However, it is also known that residual estimators usually overestimate the true error by a large margin compared to
estimators of the Zienkiewicz–Zhu (ZZ) type (cf. [8]). In this paper we introduce a hybrid a posteriori error estimator
for the conforming finite element method, which is more accurate than the residual error estimator and is reliable on
all meshes unlike the ZZ estimators.

By first recovering a gradient in the conforming C0 linear vector finite element space from the numerical gradient,
the Zienkiewicz–Zhu (ZZ) estimator [9] is defined as the L2 norm of the difference between the recovered and
the numerical gradients. Due to its simplicity, universality, and asymptotic exactness for smooth problems, the ZZ
estimator enjoys a high popularity in the engineering community (see, e.g., [6,10–12]).

Despite its popularity, it is also well known that estimators of the ZZ type have several major drawbacks. First,
adaptive mesh refinement (AMR) algorithms using the ZZ estimator are not efficient to reduce global error for non-
smooth problems, e.g., interface problems (see, e.g., [13]). By exploring the mathematical structure of the underlying
problem and the characteristics of finite element approximations, [14] identified the reason for this failure, and [15]
introduced an improved ZZ estimator for the lowest order conforming elements which is explicit and efficient for
non-smooth problems. Second, estimators of the ZZ type are not reliable on coarse meshes relative to the underlying
problem. A simple one-dimensional example in [4] shows that the ZZ estimator equals zero but the true error is
arbitrarily large. For a two-dimensional example, see Section 5.4. Moreover, estimators of the ZZ type work only for
elements of the lowest order and research for higher order elements is still in its infancy (see, e.g., [16,17]). Bank, Xu,
and Zheng in [16] recovered higher order derivatives, and Naga and Zhang in [17] approximated the numerical solution
by a higher order polynomial. Both the approaches demonstrate some appealing features like super-convergence and
asymptotic exactness under certain smoothness assumptions of the exact solution.

Comparing with the residual estimator, we realized that the scaled element residual is no longer higher order when
the recovered flux is the L2 projection of the numerical flux in an H (div)-conforming space. By simply adding an
appropriately weighted element residual to the improved ZZ estimator, it was shown in [18] that the resulting estimator
for higher order elements is reliable on all meshes and more accurate than the residual estimator. Computing the L2

projection of the numerical flux in an H (div)-conforming space requires solving a global problem and, hence, the
estimator in [18] is more expensive than the residual estimator.

The purpose of this paper is to introduce an explicit flux recovery in an H (div)-conforming space so that the
resulting hybrid error estimator is more accurate than the residual estimator with similar computational cost and
applicability. To do so, we first specify the desired normal component of the recovered flux on each face as a weighted
average of the normal components of the numerical fluxes. Then the recovered flux is chosen to satisfy a compatible
divergence equation on each element. In particular, we are able to derive an explicit formula for a recovered flux in
an H (div)-conforming space and the formula is automatically valid for higher order finite element approximations.
Unlike existing ZZ-type estimators, which are not reliable on coarse meshes, we incorporate the divergence error in
the estimator and the resulting error estimator of hybrid type is proved to be reliable on all meshes.

This hybrid estimator displays a strong connection to the explicit residual estimator as we can prove that the
proposed estimator is actually equivalent to the residual estimator [5] with constants independent of the diffusion
coefficients (see Section 4.2). As a result, the robustness of the residual estimator with respect to coefficient jumps
carries over to the hybrid estimator. Despite the theoretical equivalence, numerical results show that the hybrid
estimator is more accurate than the residual estimator. Hence the hybrid estimator can be viewed as a substitute of the
residual estimator with an improved accuracy. The innate link to the residual estimator lends comparable generality
to the hybrid estimator and future work includes applying the technique to convection–diffusion problems.

The rest of the paper is organized as follows. In Section 2, we introduce the model problem with a conforming
finite element discretization and some notation. In Section 3, we present the explicit flux recovery. In Section 4,
after defining the element indicator and the resulting global error estimator, we prove the robust local efficiency and
global reliability. The equivalence between the proposed local indicator and the standard residual-based indicator
is established in Section 4.2. Numerical results are presented in Section 5 to demonstrate the performance of the
proposed estimator and a counter example is included in the end to illustrate the unreliability of ZZ-type estimators
on a coarse mesh.

2. Problem and finite element approximation

Let Ω be a bounded polygonal domain in Rd (d = 2, 3) with Lipschitz boundary ∂Ω , where ∂Ω = Γ̄D ∪ Γ̄N and
ΓD ∩ ΓN = ∅. For simplicity, assume that meas(ΓD) > 0. Consider the diffusion equation

− div(A∇u) = f in Ω (2.1)
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