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Abstract

This paper marks the debut of a Galerkin isogeometric method for solving a Fredholm integral eigenvalue problem, enabling
random field discretization by means of the Karhunen–Loève expansion. The method involves a Galerkin projection onto a finite-
dimensional subspace of a Hilbert space, basis splines (B-splines) and non-uniform rational B-splines (NURBS) spanning the
subspace, and standard methods of eigensolutions. Compared with the existing Galerkin methods, such as the finite-element
and mesh-free methods, the NURBS-based isogeometric method upholds exact geometrical representation of the physical
or computational domain and exploits regularity of basis functions delivering globally smooth eigensolutions. Therefore, the
introduction of the isogeometric method for random field discretization is not only new; it also offers a few computational
advantages over existing methods. In the big picture, the use of NURBS for random field discretization enriches the isogeometric
paradigm. As a result, an uncertainty quantification pipeline of the future can be envisioned where geometric modeling, stress
analysis, and stochastic simulation are all integrated using the same building blocks of NURBS. Three numerical examples,
including a three-dimensional random field discretization problem, illustrate the accuracy and convergence properties of the
isogeometric method for obtaining eigensolutions.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Many uncertainty quantification problems in engineering and applied sciences require modeling spatial variability
of random input parameters. For instance, the tensile and fracture toughness properties of engineering materials,
the size and shape characteristics of mechanical components, and the wind and snow loads in structural systems
all exhibit randomness that varies not only from sample to sample, but also from point to point in their respective
domains. Therefore, random field treatment of spatial varying randomness is a vital ingredient in computational
analysis. Loosely speaking, a random field represents a random quantity at each point of the domain and, therefore,
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engenders an infinite number of random variables. In practice, though, the number of random variables must be finite
and manageable but also large enough to ensure an optimal or accurate approximation of the original random field.
This process is often referred to as random field discretization.

A number of methods and approaches are available for random field discretization. For brevity, this paper will not
perform a comprehensive review, but will direct readers to a paper by Betz et al. [1], which provides a summary of
existing works, including many references cited therein. A popular approach, known by the name of Karhunen–Loève
(KL) expansion [2–4], entails spectral decomposition of the covariance function, leading to an infinite series consisting
of deterministic functions of space and uncorrelated random variables. The expansion is well known with diverse
applications in engineering and applied sciences [5]. However, the KL expansion mandates solution of a Fredholm
integral eigenvalue problem [6], which is not an easy task in general. Analytical solutions are available only when the
covariance function has simpler functional forms, such as exponential or linear functions, and/or the problem domain
is rectangular. For arbitrary covariance functions or arbitrary domains in two or three dimensions, numerical methods
are often needed to solve the eigenvalue problem approximately.

For numerical solution of the integral eigenvalue problem, a well-known method is the Galerkin finite-element
method (FEM) employed by Ghanem and Spanos [7] in the 1990s. Roughly speaking, the finite-element solution
consists of a variational formulation and function spaces defined by its basis functions [8]. These basis functions
are described by local representations via finite elements, resulting in a mesh or grid, which constitutes a non-
overlapping decomposition of the computational domain into elementary shapes, such as triangles or tetrahedra
and quadrilaterals or hexahedra. However, for mechanical systems with complex geometry, a finite-element mesh
is often created from a computer-aided design (CAD) model, where the former is an approximation of the latter.
Therefore, an additional source of imprecision is embedded in the FEM-based eigensolution. Another Galerkin
approach, which sidesteps the need for element-wise decomposition, is the meshless or mesh-free method, especially
the element-free Galerkin method [9], upon which Rahman and Xu [10,11] capitalize for the solution of the integral
eigenvalue problem. The fundamental aspects of both FEM and the mesh-free method are identical as they are
rooted in the same Galerkin formulation, but the function spaces and their basis functions are different: in FEM,
the basis functions are interpolatory polynomials with C0-continuity across element boundaries, whereas in the mesh-
free method, the basis functions are non-interpolatory rational functions with at least C1-continuity everywhere. In
consequence, the approximate eigenfunctions of the KL expansion obtained by the mesh-free method are usually
globally smoother than those derived from FEM. Nonetheless, as in FEM, the link between the mesh-free method
and CAD geometry is, at best, tenuous [12]. Indeed, FEM or the mesh-free method may never faithfully replicate the
CAD geometry. More importantly, for complex engineering designs, generating a high-quality finite-element mesh
or mesh-free discretization from the CAD geometry is more formidable than performing the analysis. This is the
principal motivation behind replacing finite-element- or mesh-free-generated basis functions with CAD-generated
basis functions for solving the integral eigenvalue problem directly, leading to effective random field discretization.

This paper presents a Galerkin isogeometric method for solving the integral eigenvalue problem stemming from
the KL expansion of a random field with an arbitrary covariance function and an arbitrary computational domain
in three dimensions. The method entails performing a Galerkin discretization of the integral eigenvalue problem,
formulation of the associated matrix eigenvalue problem by constructing the isogeometric function spaces spanned by
basis splines (B-splines) and non-uniform rational B-splines (NURBS), and solution of the resultant matrix eigenvalue
problem by standard methods. The paper is organized as follows. A brief exposition of NURBS paraphernalia and
isogeometric concept is given in Section 2. Section 3 formally defines a random field and its KL expansion, followed
by truncation of the KL expansion and a description of associated error measures. The limitation of the KL expansion
is also discussed. Section 4 presents the proposed isogeometric method for solving the integral eigenvalue problem.
The properties and construction of system matrices involved in the matrix eigenvalue problem are explained. The
results from three numerical examples of increasing dimensions and hence complexity are reported in Section 5 and
Appendix. Section 6 discusses future work. Finally, conclusions are drawn in Section 7.

2. Isogeometric analysis

Let N := {1, 2, . . .}, N0 := N ∪ {0}, R := (−∞,+∞), R+

0 := [0,+∞), and R+
:= (0,+∞) represent the sets of

positive integer (natural), non-negative integer, real, non-negative real, and positive real numbers, respectively. Denote
by d the dimension of the physical or computational domain D of a geometrical object, which can be a curve, surface,
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