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Abstract

In the field of uncertainty quantification, sparse polynomial chaos (PC) expansions are commonly used by researchers for a
variety of purposes, such as surrogate modeling. Ideas from compressed sensing may be employed to exploit this sparsity in order
to reduce computational costs. A class of greedy compressed sensing algorithms use least squares minimization to approximate
PC coefficients. This least squares problem lends itself to the theory of optimal design of experiments (ODE). Our work focuses
on selecting an experimental design that improves the accuracy of sparse PC approximations for a fixed computational budget.
We propose a novel sequential design, greedy algorithm for sparse PC approximation. The algorithm sequentially augments an
experimental design according to a set of the basis polynomials deemed important by the magnitude of their coefficients, at each
iteration. Our algorithm incorporates topics from ODE to estimate the PC coefficients. A variety of numerical simulations are
performed on three physical models and manufactured sparse PC expansions to provide a comparative study between our proposed
algorithm and other non-adaptive methods. Further, we examine the importance of sampling by comparing different strategies in
terms of their ability to generate a candidate pool from which an optimal experimental design is chosen. It is demonstrated that the
most accurate PC coefficient approximations, with the least variability, are produced with our design-adaptive greedy algorithm and
the use of a studied importance sampling strategy. We provide theoretical and numerical results which show that using an optimal
sampling strategy for the candidate pool is key, both in terms of accuracy in the approximation, but also in terms of constructing
an optimal design.
Published by Elsevier B.V.
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1. Introduction

Our understanding of complex scientific and engineering problems often stems from a general Quantity of
Interest (QoI). Practical analysis, design, and optimization of complex engineering systems require modeling physical
processes and accounting for how uncertainties impact QoIs. Uncertainties may arise from variations in model inputs,
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measurements and data, or boundary and operating conditions. Much research has been done to quantify how the
presence of uncertainty within a model manifests changes in a QoI [1–3]. This problem is often studied in the field of
Uncertainty Quantification (UQ).

A common approach in UQ for problems with random inputs involves expanding the QoI in a polynomial basis,
referred to as a polynomial chaos expansion [1,4]. One way to construct a PC expansion is to formulate a regression
problem using Monte Carlo samples of the QoI. Often QoIs in scientific and engineering applications admit sparse
PC expansions, i.e., the QoI can be approximated by a small subset of the polynomial basis functions which capture
important features of the model. This work focuses on QoIs which admit sparse PC expansions as detailed below.
Sparsity may be exploited to regularize the regression problem; a concept studied in the context of compressed
sensing [5–9]. In UQ, sparse PC expansions have been applied for a variety of different purposes [10–28].

Assume that the input parameters of our model are represented by a d-dimensional random vector Ξ :=

(Ξ1, . . . ,Ξd ) with independent, identically distributed entries, where we denote all realized random vectors by ξ .
Further, assume that Ξ obeys some joint probability density function f (ξ ). We wish to approximate an unknown
scalar QoI, with finite variance, denoted by u(Ξ ). Let ψk(Ξ ) represent a multivariate orthogonal polynomial, then we
may write our QoI using a PC expansion as

u(Ξ ) =

∞∑
k=0

ckψk(Ξ ). (1)

We truncate the expansion in (1) for computation, i.e., let c = (c1, . . . , cP )T so that

u(Ξ ) =

P∑
k=1

ckψk(Ξ ) + ϵ(Ξ ) ≈

P∑
k=1

ckψk(Ξ ), (2)

where ϵ(Ξ ) represents the truncation error introduced by truncating the expansion to a finite number of terms. Often,
in practice, many of the coefficients ck are negligible and thus u(Ξ ) admits a sparse representation of the form

u(Ξ ) ≈

∑
k∈C

ckψk(Ξ ), (3)

where the index set C has few elements, say s = |C| ≪ P , and we say that our QoI is approximately sparse in the
polynomial basis.

The polynomials ψk(Ξ ) are selected with respect to the probability measure f (ξ ) so that they are orthogonal,
e.g., when Ξ obeys a jointly uniform or Gaussian distribution (with independent components), ψk(Ξ ) are multivariate
Legendre or Hermite polynomials, respectively [4]. We assume ψk(Ξ ) is obtained by the tensorization of univariate
polynomials orthogonal with respect to the probability density function of the coordinates of Ξ , and that ψk(Ξ ) is of
total order less than or equal to p. This total order construction implies that there are P :=

(
p+d

d

)
basis polynomials,

and facilitates approximations of the form of (3) which favor lower order polynomials. Furthermore, we assume that
ψk(Ξ ) are normalized such that E

[
ψ2

k

]
= 1, where E[·] denotes the mathematical expectation operator.

For i = 1, . . . , N , where N is the number of independent samples considered, the computational model is evaluated
for each realization of Ξ , which we denote ξ i , and yields a corresponding value of the QoI u(ξ i ). The coefficients c are
approximated using an experimental design consisting of samples

{
ξ i
}N

i=1 and their corresponding QoIs
{
u(ξ i )

}N
i=1,

which are related by the linear system u ≈ Ψc, where

Ψ (i, j) := ψ j (ξ i ) and u :=
[
u(ξ 1), . . . , u(ξ N )

]T
. (4)

Further, let W be a diagonal positive-definite weight matrix such that W(i, i) is a function of ξ i , which depends on the
sampling strategy described in Section 2. Let Φ := WΨ and v := Wu. Under this sampling strategy, we consider the
linear system

v ≈ Φc. (5)

In compressed sensing, a sparse approximation ĉ of c is obtained by solving the optimization problem

ĉ = argmin
c

∥c∥0 subject to ∥v − Φc∥2 ≤ δ, (6)
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