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Abstract

A high-order hybrid method consisting of a high-accurate explicit finite-difference scheme and a Weighted Essentially Non-
Oscillatory (WENO) scheme is proposed in this article. Following this premise, two variants are outlined: a hybrid made up of a
Finite Difference scheme and a compact WENO scheme (CRWENO 5), and a hybrid made up of a Finite Difference scheme and
a non-compact WENO scheme (WENO 5). The main difference with respect to similar schemes is its a posteriori nature, based
on the Multidimensional Optimal Order Detection (MOOD) method. To deal with complex geometries, a multi-block approach
using Moving Least Squares (MLS) procedure for communication between meshes is used. The hybrid schemes are validated with
several 1D and 2D test cases to illustrate their accuracy and shock-capturing properties.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The solution of partial differential equations in presence of strong shocks has always been a difficult task. Several
techniques have been explored in order to achieve high-order results, with the consequential increase of computational
cost. In this article we explore a new hybrid technique based on the a posteriori detection paradigm that combines
a Finite Difference (FD) scheme and a Weighted Essentially Non-Oscillatory (WENO) scheme. Obviously the
methodology presented in this article is not only restricted to the schemes we present, but can also be applied to
any combination of finite difference and WENO schemes regardless of their order of accuracy and/or compactness.

The key idea is to combine a fast and accurate scheme that cannot deal with shocks, with a scheme that can deal
with them accurately at the expense of a higher computational cost. The scheme that can deal with shocks will only
be used on those areas where the fast and accurate scheme is unable to obtain a quality solution. Thus, it is crucial the
accurate and reliable detection of the problematic zones.
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To that matter, several methods combining FD with WENO schemes have been proposed in the literature. For
instance, Costa and Don presented in [1] a hybrid method composed by a sixth order FD scheme and a fifth order
WENO scheme for the smooth and discontinuous parts of the solution, respectively. The type of criterion used to
switch from one scheme to the other relies on a sensor that detects the discontinuities in advance (a priori detection).

The approach proposed by Pirozzoli [2] combines a fifth-order compact upwind algorithm for the smooth parts
of the flow with a fifth-order WENO scheme to capture discontinuities. The detection criterion is a priori as well,
employing a threshold value to distinguish the smooth from the non-smooth zones.

As explained in [3], the drawback of these approaches is that the shock locations are predicted, and related to the
a priori guesses there can be a loss of efficiency due to over-detection of problematic zones. This happens around
critical points, where the denominator of the derivatives approaches zero, and the method switches to the WENO
scheme. To decrease the over-dissipation associated with such a degeneration, dimensional parameters, which require
tuning for different problems, have been introduced in these a priori approaches.

In this work, an a posteriori detection criterion based on the Multidimensional Optimal Order Detection (MOOD)
method is proposed. The reader is referred to [4,5] for details on the MOOD paradigm.

Our approach differs from the original MOOD because of the underlying schemes we use for the calculations. In
the original MOOD method [4], a single scheme ranging from arbitrary high-order to first order is used, so that the
reconstruction order of the problematic cells is gradually downgraded up to first order in case all the others attempts
have failed. In our approach, we combine two methods of similar order, but with a significant difference in terms of
computational cost. The fastest method is not able to deal with shocks, whereas the other method can handle shock
waves at the price of increasing the overall computational cost. This conceptual difference is why we do not label
the proposed methodology as MOOD, since it is an a posteriori approach but the order of the chosen schemes is not
downgraded.

In this work we also present an approach based on Moving Least Squares (MLS) to apply the numerical scheme to
block-structured meshes.

The structure of the paper is as follows. First, the governing equations and the different numerical methods used are
presented. Then, the a posteriori detection paradigm is introduced. In Section 6 we present the MLS-based technique
for multi-block grid, and then we present some numerical examples to show the accuracy, efficiency and robustness
of the proposed hybrid schemes. Finally, conclusions are drawn.

2. Governing equations

The goal of this article is to solve the two-dimensional Euler equations in general coordinates for an inviscid,
compressible, Newtonian fluid. Following the general curvilinear transformation (x, y) → (ξ, η) as in [6], these
equations are written in the following strong conservation form:
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where Û denotes the transformed vector of conservative variables, being the original vector U = (ρ, ρu, ρv, ρE)T

and F̂ and Ĝ are the generalized inviscid flux-vectors. Using the same notation as in [7], these vectors can be
expressed as
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where ρ is the density, u and v are the velocity components along the x and y axes, p is the pressure, and E is the
total energy per unit mass expressed as
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In (3), γ is the ratio of specific heat coefficients of the gas/fluid (for an ideal, monatomic gas, γ = 7/5). The
quantities ξx , ξy , ηx and ηy are the spatial metrics of the transformation between the physical domain (x, y) and the
computational space (ξ, η), where the subscript denotes partial derivation.
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