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Abstract

The local projection stabilization (LPS) method is already an established method for stabilizing saddle-point problems and
convection–diffusion problems. The a priori error analysis is usually done for homogeneous Dirichlet data. It turns out that without
Dirichlet conditions the situation is more involved, because additional boundary terms appear in the analysis. The standard approach
can be modified by using additional stabilization terms on the non-Dirichlet boundary parts. We show that such terms lead to a
similar a priori estimate as the classical LPS method but in a stronger norm.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The Stokes system is an important system of equations to model viscous incompressible flows. Due to its saddle-
point structure the well-posedness can be obtained for appropriate function spaces by an inf–sup condition. If the
discrete counterpart, e.g by finite elements, does not fulfill a corresponding discrete inf–sup condition, stabilization
terms must be added to ensure existence and uniqueness for the pressure variable. This is for instance the case
for equal-order finite elements, i.e. the same polynomial degree for the velocity and the pressure variables. There
are well-known strategies for such stabilization techniques: Perhaps the most prominent ones are the pressure-
stabilization/Petrov–Galerkin (PSPG) method [1], the local projection stabilization (LPS) [2,3]. and the interior
penalty method [4]. Apart of saddle point problems, the LPS method has also been applied and analyzed in the
context of convection stabilization, see e.g. the work of Barrenechea et al. [5,6] and Knobloch [7,8]. Related ideas are
based on global pressure projections [9] or polynomial pressure projections, see [10].

The LPS method is usually formulated for the case of Dirichlet conditions on the entire boundary of the
computational domain. Although other boundary conditions as outflow conditions (or Neumann conditions) are very
important for many applications, the analysis for LPS does not yet cover this case. The reason is that the stability proof
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and the a priori estimate make use of integration by parts. For velocities with non-vanishing traces on the boundary
of the domain, this partial integration generates boundary integrals which in general do not vanish and cannot be
properly bounded by the standard LPS method. This work will extend the well-known results of LPS [3,11] for such
kind of non-Dirichlet conditions. It turns out that the approach has to be modified by considering additional boundary
fluctuations in the stabilizing term.

In Section 2 we formulate the underlying system of equations, the boundary conditions and its variational
formulation. The non-standard inf–sup condition for the infinite dimensional function spaces and non-Dirichlet
conditions is given in Section 3. In Section 4 we introduce the finite element spaces and the discrete counterpart
of the Stokes system including the LPS stabilization. The analysis is carried out in Section 5; we present in particular
the discrete inf–sup condition and an a priori error estimate on basis of the existence of an interpolation operator with
certain orthogonality properties. We also show sufficient conditions to ensure the existence of such an interpolant, and
we verify them for several finite elements. We end in Section 6 with numerical results.

2. Stokes system and its variational formulation

We consider the Stokes equations in a Lipschitz domain Ω ⊂ Rd , d ∈ {2, 3}, with a boundary split into two parts,
∂Ω = ΓD ∪ ΓN , homogeneous Dirichlet conditions on ΓD and a natural outflow condition (zero stress) on ΓN . With
the velocity field u : Ω → Rd , the pressure p : Ω → R, and a forcing term f : Ω → Rd the Stokes system reads

− ∆u + ∇ p = f in Ω , (1)

div u = 0 in Ω , (2)

u = 0 on ΓD, (3)

∇u · n − pn = 0 on ΓN . (4)

The Hilbert spaces for u, p are denoted by

V := {v ∈ H 1(Ω )d
| v = 0 on ΓD},

Q := L2(Ω ).

We use the usual notations: (·, ·)ω for the L2 scalar product in ω ⊆ Ω , || · ||ω for the L2-norm in ω. In the case ω = Ω ,
we suppress the index ω. For the semi-norm of the Sobolev space H l(ω) we use also the standard notation |·|H l (ω).
By || · ||ΓN

we denote the L2(ΓN )-norm on ΓN in the sense of the (d − 1)-dimensional Hausdorff measure Hd−1(ΓN ).
The corresponding bilinear form A : (V × Q) × (V × Q) → R for the Stokes equations is given by

A(u, p; φ, χ) := (∇u, ∇φ) − (p, div φ) + (div u, χ),

where φ ∈ V and χ ∈ Q are the test functions. The Stokes system in variational formulation reads

u ∈ V, p ∈ Q : A(u, p; φ, χ) = (f, φ) ∀φ ∈ V, χ ∈ Q. (5)

Note that H 1
0 (Ω )d

⊆ V but H 1
0 (Ω )d

̸= V in the case of Hd−1(ΓN ) > 0.
This variational formulation is consistent in the following sense: Each classical solution (u, p) ∈ (C2(Ω )d

∩

C(Ω̄ )d ) × (C1(Ω ) ∩ C(Ω̄ )) of (1)–(4) is also a weak solution of (5). Vice-versa, each weak solution of (5) in V × Q
with enough regularity is also a classical solution of (1)–(4).

3. The inf–sup condition for partial Dirichlet conditions

It is well known that the inf–sup condition holds for the Stokes system with homogeneous Dirichlet conditions on
the entire boundary ∂Ω , i.e. there exists a γ > 0 s.t. (cf. e.g. Girault & Raviart [12], p. 81)

sup
u∈H1

0 (Ω)d\{0}

(p, div u)
||p||||∇u||

≥ γ ∀p ∈ L2
0(Ω ), (6)

where L2
0(Ω ) is the space of all p ∈ L2(Ω ) with vanishing mean, i.e.

p̄ := |Ω |
−1
∫
Ω

p dx = 0.
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