
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 333 (2018) 287–310
www.elsevier.com/locate/cma

A priori and computable a posteriori error estimates for an HDG
method for the coercive Maxwell equations

Huangxin Chena,1, Weifeng Qiub,∗,1, Ke Shic,1

a School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific
Computing, Xiamen University, Fujian, 361005, China

b Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
c Department of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23529, USA

Received 11 August 2017; received in revised form 27 December 2017; accepted 17 January 2018

Abstract

In this paper we present and analyze a hybridizable discontinuous Galerkin (HDG) method for a mixed curl–curl formulation of
the steady state coercive Maxwell equations. With a discrete Sobolev embedding type estimates for the discontinuous polynomials,
we provide a priori error estimates for the electric field and the Lagrange multiplier in the energy norm. With the smooth or minimal
regularity assumption on the exact solution, we have optimal convergence rate for the electric field and the Lagrange multiplier in
the energy norm. The a priori error estimate for the electric field in the L2-norm is also obtained by the duality argument, and the
approximation is also optimal for the electric field in the L2-norm. Moreover, by employing suitable Helmholtz decompositions of
the error, together with the upper bound estimate for the Lagrange multiplier, we provide a computable residual-based a posteriori
error estimator which is derived based on the error measured in terms of a mesh-dependent energy norm. The efficiency of the
a posteriori error estimator is also established. Three dimensional numerical results testing the performance of the a priori and a
posteriori error estimates for the Maxwell equations are given.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the steady state coercive Maxwell equations as follows:

∇ × (∇ × u) + ∇ p = f in Ω , (1.1a)
∇ · u = 0 in Ω , (1.1b)
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u × n = g on ∂Ω , (1.1c)
p = 0 on ∂Ω , (1.1d)

where Ω is a simply connected polyhedral Lipschitz domain in R3 and the unknowns are electric field u and pseudo-
pressure p. Here f ∈ H (div,Ω ) is the source term, g is given on ∂Ω and n denotes the unit outward normal to
∂Ω .

In the literature, various numerical methods have been investigated for the Maxwell equations. For instance, the
H (curl,Ω )-conforming edge element methods [1–5], discontinuous Galerkin (DG) method [6–17], and discontinuous
Petrov–Galerkin (DPG) method [18]. The DG methods have several attractive features which include their robustness,
element-wise conservation properties, some flexible capabilities in mesh generation and to provide high-order accurate
solutions. Especially, comparing with H (curl,Ω )-conforming edge element methods, it is much easier to implement
DG methods using hp-adaptivity for the Maxwell equations. However, the total number of global degrees of freedom
of DG methods is much more than that of H (curl,Ω )-conforming edge element methods. In fact, after static
condensation, the global unknowns of DG methods are the traces of numerical electric field and numerical pseudo-
pressure from both sides of each interior interface on the mesh skeleton, while those of H (curl,Ω )-conforming
edge element methods are the tangential trace of numerical electric field and trace of numerical pseudo-pressure
on each interior interface on the mesh skeleton. So, if we assume that all methods use the same three dimensional
simplicial mesh with the same polynomial order, the ratio between the global unknowns of DG methods and that
of H (curl,Ω )-conforming edge element methods is about 8

3 . In order to reduce the dimension of system from the
standard approximation DG space, the hybridizable discontinuous Galerkin (HDG) methods [19–24] were recently
introduced. The resulting system of HDG methods is only due to the unknowns on the skeleton of the mesh. Two HDG
methods were introduced (without error analysis) in [12] for the numerical solution of the time-harmonic Maxwell
equations. Some coercive bilinear formulations (cf. e.g. [9,10,17] and the references therein) have been developed to
solve the coercive Maxwell equations (1.1) in the curl–grad system. In a recent work [17], we considered two new
HDG methods on simplicial mesh and general polyhedral mesh respectively for the above coercive Maxwell equations
with smooth regularity assumption on the exact solution. Due to a careful design of the numerical flux and using a
non-trivial subspace of polynomials to approximate the numerical tangential trace of the electric field, the HDG
methods in [17] provide optimally convergent approximations to the electric field and achieves superconvergence for
the electric field without postprocessing from the point of view of global degrees of freedom. However, the solution
of the Maxwell equations usually has limited regularity due to the complexity of the domain. In this paper, we further
consider an HDG method for the above coercive Maxwell equations with smooth or minimal regularity assumption on
the exact solution. Compared with the HDG methods in [12,17], two stabilization parameters in the numerical fluxes
are carefully designed to obtain the optimally convergent HDG method for the Maxwell equations (1.1). We would
like to point out that the global unknowns of HDG method in this paper are (̂ut

h , p̂h) - the numerical approximations to
the tangential trace of electric field and the trace of pseudo-pressure on the mesh skeleton. So, on the same simplicial
mesh with the same polynomial order, the number of global degrees of freedom of HDG method is approximately the
same as that of H (curl,Ω )-conforming edge element methods.

In order to present the HDG method, we write the Maxwell equations (1.1) into a system of first order equations.
We introduce a new unknown w = ∇ × u. Now we can write the Maxwell equations (1.1) in a mixed curl–curl
formulation as follows:

∇ × u = w in Ω , (1.2a)
∇ × w + ∇ p = f in Ω , (1.2b)

∇ · u = 0 in Ω , (1.2c)
u × n = g on ∂Ω , (1.2d)

p = 0 on ∂Ω . (1.2e)

The objective of this paper is to develop an absolutely well-posed HDG method which deserves optimal
approximation for the above mixed curl–curl formulation (1.2) with smooth or minimal regularity assumption on the
exact solution. We use polynomials of degree k, k, k + 1 in the HDG method to approximate w, u and p respectively.
We discovered a key discrete Sobolev embedding inequality: let v ∈ Pk(Th) satisfying (v,∇q)Ω = 0 for any q ∈

H 1
0 (Ω ) ∩ Pk+1(Th), then

∥v∥Th ≤ C
(
∥h−

1
2 [[v × n]]∥Eh + ∥∇ × v∥Th

)
, (1.3)
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