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Abstract

The Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in
porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated
by a fixed interface Γ . This leads to two problems defined on the subdomains which are coupled through conditions expressing
flux and pressure continuity at Γ . After an Euler implicit discretisation of the resulting nonlinear subproblems, a linear iterative
(L-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present
numerical results that are in line with the theoretical finding, in particular the convergence of the scheme under mild restrictions
on the time step size. We further compare the scheme to other approaches not making use of a domain decomposition. Namely,
we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while
remaining comparable in computational time, even if no parallelisation is being adopted. After presenting a parametric study that
can be used to optimise the proposed scheme, we briefly discuss the effect of parallelisation and give an example of a four-domain
implementation.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Unsaturated flow processes through porous media appear in a variety of physical situations and applications.
Notable examples are soil remediation, enhanced oil recovery, CO2 storage, harvesting of geothermal energy, or
the design of filters and fuel cells. Mathematical modelling and numerical simulation are essential for understanding
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Fig. 1. Illustration of a layered soil domain Ω = Ω1 ∪ Ω2 ⊂ Rd with fixed interface Γ . Also shown are the normal vectors along the interface.

such processes, since measurements and experiments are very difficult if not impossible, and hence only limitedly
available. The associated mathematical and computational challenges are manifold. The mathematical models are
usually coupled systems of nonlinear partial differential equations and ordinary ones, involving largely varying
physical properties and parameters, like porosity, permeability or soil composition. Together with the large scale and
possible complexity of the domain, this poses significant computational challenges, making the design and analysis
of robust discretisation methods a non-trivial task.

In this work we focus on saturated/unsaturated flow of one fluid (water) in a porous medium (e.g. the subsurface)
occupying the domain Ω ⊂ Rd (d ∈ {1, 2, 3}). Besides water, a second phase (air) is present, which is assumed to be
at a constant (atmospheric) pressure. This situation is described by the Richards equation, here in pressure formulation

Φ∂t S(p) − ∇ ·

[
K
µ

kr
(
S(p)

)
∇

(
p + z

)]
= 0, (1)

see e.g. [1], originally [2,3]. In the above Φ denotes the porosity, S is the water saturation, p is the water pressure,
kr is the relative permeability, K the intrinsic permeability and z = −ρwgx3 is the gravitational term in direction of
the x3-axis. Finally, g is the gravitational acceleration, ρw the water density and µ its viscosity. With T > 0 being a
maximal time, the equation is defined for the time t ∈ (0, T ) on the bounded Lipschitz domain Ω .

Below we propose a domain decomposition (DD) scheme for the numerical solution of (1). To this aim we assume
that Ω is partitioned into two subdomains Ωl (l ∈ {1, 2}) separated by a Lipschitz-continuous interface Γ , see Fig. 1.
In other words one has Ω = Ω1 ∪ Ω2 ∪ Γ . The restriction to two subdomains is made for the ease of presentation,
but the scheme can be extended straightforwardly to more subdomains, see Remark 3 and Section 4.4. In each Ωl

(l ∈ {1, 2}) we use the physical pressure pl as primary variable. Furthermore, the permeability and porosity in each
of the subdomains may be different and even discontinuous, which is the case of a heterogeneous medium consisting
of block-type heterogeneity (like a fractured medium).

In view of its relevance for manifold applications in real life, Richards’ equation has been studied extensively,
both analytically and numerically, and the dedicated literature is extremely rich. We restrict ourselves here by
mentioning [4,5] for the existence of weak solutions and [6] for the uniqueness. Numerical schemes for the Richards
equation, or in general for degenerate parabolic equations, are analysed in [7–15]. Most of the papers are considering
the backward Euler method for the time discretisation in view of the low regularity of the solution, see [4], and to
avoid restrictions on the time step size.

Different approaches with regard to spatial discretisation have been considered. Galerkin finite elements were
used in [8,16,17]. Discontinuous Galerkin finite element schemes for flows through (heterogeneous) porous media
have been studied in [18,19]. Finite volume schemes including multipoint flux approximation ones for the Richards
equation are analysed in [20,21,13], and mixed finite elements in [7,22,10–12,15,14]. Such schemes are locally mass
conservative.

Applying the Kirchhoff transformation [4] brings the mathematical model to a form that simplifies mathematical
and numerical analysis, see e.g. [8,7,10,11]. However, the transformed unknown is not directly related to a physical
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