Accepted Manuscript

An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals

Eric Li, Z.C. He, Gang Wang, G.R. Liu

PII:	S0045-7825(18)30008-2
DOI:	https://doi.org/10.1016/j.cma.2018.01.006
Reference:	CMA 11726
To appear in:	Comput. Methods Appl. Mech. Engrg.
Received date :	17 June 2017
Revised date :	31 December 2017
Accepted date :	5 January 2018

Volume 272, Published 1 Nay 2011	1994-0045-7825
Computer methods in applied mechanics and engineering	Katere 2.4 August Anno 25, Gal 2.4 August 2.4 August 2.4 August 2.4 August 2.4 August 2.4 August 2.4 August
Autoria artes a ese attractivat ana ScienceDirect	hig ivez davis on bods ins

Please cite this article as: E. Li, Z.C. He, G. Wang, G.R. Liu, An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals, *Comput. Methods Appl. Mech. Engrg.* (2018), https://doi.org/10.1016/j.cma.2018.01.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Click here to download Manuscript: main FSI.docx

An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals

Eric Li^{1,2,3}, ZC He^{1*}, Gang Wang¹, GR Liu⁴

¹State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082 P. R. China

²Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China

³State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, P.R.China

⁴Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH 45221-0070, USA

Abstract

The paper presents an efficient and accurate algorithm to analyze the fluid/solid and solid/fluid phononic crystals (PCs) with fluid structure interaction (FSI). In the proposed mass-redistributed finite element method (MR-FEM), the dispersion error in the longitudinal wave of fluid domain is minimized by re-distributing the mass elements in the mass matrix to "tune" the balance, while the lumped mass matrix is employed to analyze the elastic wave within the solid. In addition, different Bloch boundary conditions including the square and triangular lattice using MR-FEM are also formulated in this work. The accuracy of the proposed MR-FEM is verified by using the commercial software COMSOL, and the computational efficiency of MR-FEM is significantly greater than the conventional finite element methods (FEM) based on six different numerical examples. The MR-FEM with excellent features has a great potential to extend 3D multiphysics domain of PCs.

Key words: Phononic Crystals; Fluid Structure Interaction; Band Gap; Mass-redistributed Finite Element Method (MR-FEM)

¹* State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082 P. R. China Email address: hezhicheng815@hnu.edu.cn

Download English Version:

https://daneshyari.com/en/article/6915580

Download Persian Version:

https://daneshyari.com/article/6915580

Daneshyari.com