Accepted Manuscript

A collocation BEM for 3D acoustic problems based on a non-singular Burton-Miller formulation with linear continuous elements

Haijun Wu, Wenjing Ye, Weikang Jiang

PII: S0045-7825(17)30770-3

DOI: https://doi.org/10.1016/j.cma.2017.12.020

Reference: CMA 11712

To appear in: Comput. Methods Appl. Mech. Engrg.

Received date: 6 April 2017 Revised date: 9 October 2017 Accepted date: 18 December 2017

Please cite this article as: H. Wu, W. Ye, W. Jiang, A collocation BEM for 3D acoustic problems based on a non-singular Burton-Miller formulation with linear continuous elements, *Comput. Methods Appl. Mech. Engrg.* (2017), https://doi.org/10.1016/j.cma.2017.12.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A collocation BEM for 3D acoustic problems based on a non-singular Burton-Miller formulation with linear continuous elements

Haijun Wu^{1,2*}, Wenjing Ye³, Weikang Jiang^{1,2}§

¹State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

²Institute of Vibration, Shock and Noise, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

³Department of Mechanical and Aerospace Engineering, School of Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Corresponding authors:

Email address: *haijun.wu@sjtu.edu.cn, \$wkjiang@sjtu.edu.cn

Abstract:

It is well known that Burton-Miller formulation can overcome the problems of non-unique solutions of exterior problems at the fictitious frequencies of the corresponding interior problems. However, the increased singularity involved in the Burton-Miller formulation is one of the crucial troublesomeness in the implementation of BEM with linear continuous element for 3D acoustic problems. Among the prevailing regularization methods, analytical evaluation of the singular integrals is a more attractive option due to the higher accuracy and less computational cost. In this work, an explicitly non-singular Burton-Miller formulation is developed for the model discretized with planar triangular elements. To facilitate the derivation of non-singular expressions, an integration method based on the vertexes' coordinates of the element is applied to the singular integrals. A collocation approach, which does not put the collocation points overlap with the nodes, is proposed to guarantee a $C^{1,a}$ Hölder continuity for canceling out the divergent terms appeared in obtaining the non-singular expression. By expanding the exponent function in the integrand into a Taylor series, analytical expressions are derived for the generic line integrals left in the non-singular Burton-Miller formulation with respective to the polar angle. At last, a collocation BEM with linear continuous element is built for 3D acoustic problems, which is more accurate and efficient in solution, as well as less in memory consumption than that of the BEM with constant element. Numerical examples are elaborately designed to validate the formulations and procedure of the linear BEM.

Keywords: boundary element method, linear continuous element, Burton-Miller formulations, hyper singular integral, Helmholtz equation

Download English Version:

https://daneshyari.com/en/article/6915597

Download Persian Version:

https://daneshyari.com/article/6915597

<u>Daneshyari.com</u>