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Abstract

In this article we address the theoretical study of a multiscale drift–diffusion (DD) model for the description of photoconversion
mechanisms in organic solar cells. The multiscale nature of the formulation is based on the co-presence of light absorption,
conversion and diffusion phenomena that occur in the three-dimensional material bulk, of charge photoconversion phenomena
that occur at the two-dimensional material interface separating acceptor and donor material phases, and of charge separation and
subsequent charge transport in each three-dimensional material phase to device terminals that are driven by drift and diffusion
electrical forces. The model accounts for the nonlinear interaction among four species: excitons, polarons, electrons and holes, and
allows to quantitatively predict the electrical current collected at the device contacts of the cell. Existence and uniqueness of weak
solutions of the DD system, as well as nonnegativity of all species concentrations, are proved in the stationary regime via a solution
map that is a variant of the Gummel iteration commonly used in the treatment of the DD model for inorganic semiconductors. The
results are established upon assuming suitable restrictions on the data and some regularity property on the mixed boundary value
problem for the Poisson equation. The theoretical conclusions are numerically validated on the simulation of three-dimensional
problems characterized by realistic values of the physical parameters.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Within the widespread set of applications of nanotechnology, the branch of renewable energies certainly occupies a
prominent position because of the urgent need of addressing and solving the problems related with the production and
use of energy and its impact on air pollution and climate. We refer to [1] for the analysis of the state-of-the-art in the
complex connection between industrial and domestic usage of energy and global climate change. Renewable energies
comprise a set of different physical and technological approaches to production, storage and delivery of sources of
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supply to everyday’s life human activities that are alternative to the usual fossil fuel, and include, without being limited
to: solar, hydrogen, wind, biomass, geothermal and tidal energies. A comprehensive survey on the fundamental role
of nanotechnology in understanding and developing novel advancing fronts in renewable energies can be found in [2].

In this article we focus our interest on the specific area of solar energy, and, more in detail, on organic solar cells
(OSCs). OSCs have received increasing attention in the current nanotechnology industry because of distinguishing
features such as good efficiency at a very cheap cost and mechanical flexibility due to roll-to-roll fabrication process,
which make them promising alternatives to traditional silicon-based devices [3]. The macroscopic behaviour of an
OSC depends strongly on the photoconversion mechanisms that occur at much finer spatial and temporal scales.
According to the physical description of [4–6], such mechanisms basically consist in: (1) generation and diffusion of
excited neutral states in the material bulk; (2) dipole separation at material interfaces into positive and negative charge
carriers; and (3) transport of charge carriers in the different material phases for subsequent collection of electric current
at the output device terminals (positive charges at the anode and negative charges at the cathode).

In the following pages we proceed along the line of the series of works [7–10] and we carry out the mathematical
analysis of the model proposed in [8] and studied in two-dimensional geometrical configurations, under the
assumption that the computational domain is a three-dimensional polyhedron divided into two disjoint regions
separated by a two-dimensional manifold that represents the material interface at which the principal photoconversion
phenomena take place. The structure considered in the present work is described in Section 2 and can be regarded as a
faithful representation of a realistic OSC. The mathematical model, described in Section 3, and then subsequently
in Sections 4 and 5, is an extension of the classic Drift–Diffusion (DD) system of partial differential equations
(PDEs) used for the investigation of charge transport in semiconductor devices for micro and nano-electronics [11–14].
It consists of a multidomain differential problem in conservation format for four distinct species: excitons, polarons,
electrons and holes. Excitons and polarons are neutral particles; polarons may dissociate into electrons (negatively
charged) and holes (positively charged) at the interface and the resulting free charges are free to move in
their respective material phases under the action of a internal potential drop (related to the work function gap
between the two phases) and of an external electric field due to an applied voltage drop. Electrons and holes are
electrostatically coupled through Gauss’ law in differential form (Poisson equation) and kinetically coupled through
recombination/generation reactions occurring at the interface.

The resulting problem is a highly nonlinearly coupled system of advection–diffusion–reaction PDEs for which, in
Section 6, we provide in the stationary regime a complete analysis of the existence and uniqueness of weak solutions,
as well as nonnegativity of all species concentrations, via a solution map that is a variant of the Gummel iteration
commonly used in the treatment of the DD model for inorganic semiconductors [13]. The results are established
upon assuming suitable restrictions on the data and some regularity property on the mixed boundary value problem
for the Poisson equation. The theoretical conclusions are numerically validated in Section 7 on the simulation of
three-dimensional problems characterized by realistic values of the physical parameters whereas in Section 8 some
concluding remarks and indications for future extensions of model and analysis are illustrated.

2. Geometry and notations

Let Ω ⊂ R3 denote the organic solar cell volume (called from now on the device). We assume that Ω is a bounded,
connected, Lipschitzian open set.

Inside Ω we admit the presence of an open, regular surface Γ (called from now on the interface) that divides Ω
into the two regions (connected open sets) Ωn and Ωp in such a way that Ω = Ωn ∪ Γ ∪ Ωp. The unit normal vector
oriented from Ωp into Ωn is denoted by νΓ . A graphical plot of the three-dimensional (3D) domain comprising the
interface is depicted in Fig. 1(a). The boundary of Ω is the union of two disjoint subsets, so that ∂Ω = ΓD ∪ ΓN . The
unit outward normal vector on ∂Ω is denoted by ν. Specifically, ΓD represents the contacts of the device, i.e. anode
ΓA = ΓD ∩ ∂Ωp and cathode ΓC = ΓD ∩ ∂Ωn . We assume that anode and cathode have nonzero areas and that
ΓD and Γ are strictly separated. Furthermore, ΓN is the (relatively open) part of its boundary where the device is
insulated from the surrounding environment. We put Γn = ΓN ∩ ∂Ωn and Γp = ΓN ∩ ∂Ωp. A graphical plot of a
two-dimensional (2D) cross-section of the device domain comprising the interface and the boundary is depicted in
Fig. 1(b).

The notation of function spaces in the present paper is as follows. We define Wq (q ≥ 2) as the closure of the set{
w|Ω : w ∈ C∞

(
R3) , supp (w) ∩ ΓD = ∅

}
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