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Highlights

• We proposed a new Hessian-based adaptive sparse quadrature to compute infinite-dimensional integrals with respect to the
posterior distribution in the context of Bayesian inverse problems with Gaussian prior.
• Moreover, we established that under certain assumptions, the convergence rate of the adaptive sparse quadrature is dimension

independent, thus breaking the curse of dimensionality.
• Furthermore, we proved that the convergence can be much faster than Monte Carlo type of methods, given that the integrand is

sufficiently smooth.
• Finally, we demonstrated the dimension-independent and fast convergence for both linear inverse problems and nonlinear inverse

problems.

Abstract

In this work we propose and analyze a Hessian-based adaptive sparse quadrature to compute infinite-dimensional integrals with
respect to the posterior distribution in the context of Bayesian inverse problems with Gaussian prior. Due to the concentration of
the posterior distribution in the domain of the prior distribution, a prior-based parametrization and sparse quadrature may fail to
capture the posterior distribution and lead to erroneous evaluation results. By using a parametrization based on the Hessian of
the negative log-posterior, the adaptive sparse quadrature can effectively allocate the quadrature points according to the posterior
distribution. A dimension-independent convergence rate of the proposed method is established under certain assumptions on the
Gaussian prior and the integrands. Dimension-independent and faster convergence than O(N−1/2) is demonstrated for a linear as
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well as a nonlinear inverse problem whose posterior distribution can be effectively approximated by a Gaussian distribution at the
MAP point.
Published by Elsevier B.V.
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1. Introduction

In many practical applications, a quantity of interest (QoI) predicted by a mathematical model of a physical system
may be stochastic rather than deterministic due to uncertainties arising from inadequate knowledge of input parameters
that characterize material properties, computational geometries, initial and boundary conditions, source terms, etc.
Solution of an inverse problem will reduce these uncertainties based on available observational data on some system
outputs, leading to more reliable computational predictions of the QoI. In a Bayesian framework, the solution of
the inverse problem entails the computation of the posterior probability distribution of the uncertain input parameter
conditioned on (possibly) noisy observational data of the system output. A prior probability distribution, based on
experts’ belief, is prescribed for the uncertain input parameter. Then, the posterior distribution of the uncertain
parameter can be formally obtained by the Radon–Nikodym derivative by Bayes’ theorem [1]. Once the posterior
distribution is known, one is often interested in evaluating the statistical moments of the QoI (e.g., expectation and
variance) with respect to the posterior distribution for the assessment, design, control and optimization of the system.

We consider the case of a spatially heterogeneous uncertain parameter, i.e., a spatially correlated random field with
a prescribed bounded covariance between any two points of the physical domain. This setting makes the uncertain
parameter infinite-dimensional, which naturally leads to an infinite-dimensional integration problem for the evaluation
of the statistical moments of the QoI with respect to the posterior distribution. Several computational challenges
are commonly faced for such integration problems. Traditional deterministic integration methods face the curse of
dimensionality, i.e., the computational complexity grows exponentially fast with respect to the parameter dimension
so that only a limited number of dimensions can be resolved. On the other hand stochastic integration methods such
as Monte Carlo (MC) or Markov-chain Monte Carlo (MCMC) do not depend on the parameter dimension but on the
variance of the QoI; however the convergence of the quadrature errors, O(N−1/2) with N quadrature samples [2], is
often very slow. In addition, the posterior distribution, unlike the prior distribution, is usually not explicitly available
but rather is implicitly represented by means of the Bayes Theorem and becomes rather concentrated in the parameter
space when the observational data are very informative and thus is difficult to sample efficiently. Finally, when the
system is modeled by partial differential equations (PDE) in complex geometries, evaluation of the QoI at each
quadrature sample require a full PDE solve that can involve expensive large-scale computations, so that only a small
number of samples can be computed.

We tackle these computational challenges by exploiting the intrinsic sparsity of the integration problem with
respect to the posterior distribution and the structure of the inverse problem. By sparsity, we mean that the QoI
has markedly different sensitivity in different parameter dimensions under the posterior distribution; in other words,
the dependence of the QoI on different parameter dimensions is rather anisotropic with suitable parametrization of
the uncertain parameter, so that we can identify the most sensitive dimensions and allocate most of the computational
effort in these dimensions [3–8]. By structure, we mean that high-order derivatives of the parameter-to-observable
map with respect to the parameter at the maximum a posteriori (MAP) point, in particular the Hessian, describe
the inherent structure of the manifold of the posterior distribution about the MAP point, which is especially useful
when the posterior distribution is relatively concentrated at the MAP point due to informative observational data
[9–12]. To exploit these opportunities and to make the solution of the infinite-dimensional Bayesian inverse problem
computationally feasible, here we develop a novel Hessian-based adaptive sparse quadrature for integration of a QoI
with respect to the posterior distribution.

More specifically, we consider a Gaussian distribution in a Hilbert space as the prior distribution for the uncertain
parameter, where the covariance operator is given by a fractional power of a second order elliptic differential operator.
We then compute the MAP point by solving an optimization problem using a Lagrangian variational approach and an
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