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Abstract

The present paper describes a method to enhance the capability of, or to broaden the scope of computational mechanics by
using deep learning, which is one of the machine learning methods and is based on the artificial neural network. The method
utilizes deep learning to extract rules inherent in a computational mechanics application, which usually are implicit and sometimes
too complicated to grasp from the large amount of available data A new method of numerical quadrature for the FEM stiffness
matrices is developed by using the proposed method, where a kind of optimized quadrature rule superior in accuracy to the standard
Gauss–Legendre quadrature is obtained on the element-by-element basis. The detailed formulation of the proposed method is given
with the sample application above, and an acceleration technique for the proposed method is discussed
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The core of computational mechanics has been to find approximate solutions for a variety of partial differential
equations, which describe natural, physical, chemical phenomena mathematically, and the numerical methods that
form the basis of computational mechanics, such as the finite element method (FEM), the finite difference method
(FDM), the boundary element method (BEM), the particle methods and so on, have been employed to solve the
simultaneous linear equations derived by discretization of the above partial differential equations with the elements,
the lattices or the nodes.

The size of the simultaneous linear equations to be solved has been growing larger and larger. Therefore significant
amount of research resources have been devoted to solve large scale systems of linear equations efficiently, and many
solution techniques have been successfully developed to tackle large scale problems [1–3]. This trend in computational
mechanics has been supported by the development of computers in the last decades.

Extraordinary progress of digital computers has big impacts in information science and technology including
computational mechanics. Machine learning is among them [4,5]. It includes various methods and technologies, and
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many of them require a large amount of computation and would be useful only when faster computers are available.
This is the reason machine learning has progressed with the advance of computers.

Machine learning has also received significant impacts from the unprecedented advance of networking technolo-
gies: the Internet that connects computers all over the world and the Internet of the Things (IoT) technology, where
everything has its own Internet Protocol (IP) address and is connected to each other via Internet. These technologies
have made it much easier to collect enormous amount of data. Deep learning emerged to analyze the big data to
recognize implicit features out of them, to find inherent tendencies in them, and to classify them into several categories,
and has become widely known after it won overwhelming victory over any other machine learning technique in
benchmark test to recognize various images out of a great many image data collected via Internet [6]. Since then, deep
learning has begun to be utilized in various fields [7].

It is well known that some machine learning methods, including the artificial neural network (ANN), which is
the core technology of deep learning, based on the synaptic neuron model [8], the genetic algorithm (GA) based on
the biological evolution model [9,10], the genetic programming (GP) [11,12], the evolutionary algorithm (EA) or
the evolutionary strategy (ES) [10], the Monte Carlo method (MC) based on the probability theory [4], have been
tested and utilized in a variety of computational mechanics fields. These methods have added soft or probabilistically
ambiguous features to the rigid feature that is inherent in the conventional computational mechanics as the numerical
solutions of partial differential equations, exploring new fields in computational mechanics that could not be tractable
without them. As for their applications to computational mechanics, the GAs as well as the EAs have been employed in
many applications as a tool for global search [13–19]. There are also several other methods applied to computational
mechanics: the proper orthogonal decomposition (POD) and the singular value decomposition (SVD) [20,21], the
support vector machine (SVM) [22], the multifidelity importance sampling [23], the particle swarm optimization
(PSO) and the other similar algorithms inspired by the swarm intelligence [24,25], a set of methods based on the
Bayesian statistics [26–28], and various machine learning methods [29–32].

Among others, the artificial neural networks have been successfully applied to some fields in the computational
mechanics [33]. The artificial neural networks can be categorized into two groups based on their architectural
structure: the feed forward neural networks and the mutually connected neural networks such as the Hopfield
networks. The former, often called as the multilayer perceptrons, have much more applications to computational
mechanics due to their capability of approximating nonlinear mappings: the estimations of the constitutive equations
of materials, the nondestructive evaluations, the structural optimizations, and so on [34–39].

The neural networks have been applied to the modeling of materials equivalent to constitutive equations of materials
of various types [40–45], applications related to the constitutive models with novel training algorithms and network
structures [46–49], the optimization of material composition of composites [50], the modeling of hysteresis curves in
various fields [51,52]. They have also been applied to various nondestructive evaluation methods [53–59] including the
ultrasonic testing [54–56] and the electrical impedance tomography [57] and so on. There are also many applications
to structural optimization problems, most of which use the neural networks to reduce time-consuming evaluations
of individuals that occur in the iterative optimization loop driven by global search algorithm, such as the GA or the
ES [60–67].

In most of the neural networks adopted in the applications described above, the data of learning patterns and the
learning epochs are relatively small and simple, meaning that the mappings to be simulated by the neural networks
in these applications are plain, or they are forced to be so by narrowing the scope of the solution space. The above
mentioned simplifications of problems are due to the fact that neural networks often need very long training CPU time
and show poor convergence if the problem to be solved is complex.

These bottlenecks of neural networks, however, have been resolved, since computer hardware and training
algorithms for the neural networks have by far advanced as to be fast enough to train large neural networks.
Accordingly, the neural networks including deep learning have become applicable to much wider class of problems
that have been believed to be too complex to tackle.

Viewing the current situation above, we define first the framework of computational mechanics enhanced by deep
learning and then show how it can be applied to develop the optimized numerical quadrature to calculate the FEM
element matrices that are impossible to be challenged without deep learning.

As is well known, this problem is essential to the finite element method and requires a great amount of computation.
Many researches, therefore, have been performed seeking faster or more efficient numerical quadrature: the speedup
by using shortened quadrature rules [68], a fast quadrature using sum factorization [69], a fast quadrature implemented
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