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Abstract

While eigenvalue optimization problems have been widely studied during the last three decades, particularly for structural
and topology optimization problems, there are very few examples of problems involving mode shapes either in the cost or the
constraints. In this paper, we propose a general framework for computing eigenvector sensitivity whenever tracking specific mode
shapes selected beforehand. Of course, the approach is valid for either non-repeated or repeated eigenvalues, but here the emphasis
is placed on the multiple eigenvalues case. Both mathematical validity of the algorithm and numerical corroboration through several
examples are included.
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Eigenvalue optimization problems appear very frequently when dealing with structural stability and vibration
analysis, and nowadays it is a very well understood topic in topology optimization [1]. Eigenvalue sensitivity analysis
for this kind of problems is a classic issue dating back to the sixties. For eigenvalue sensitivity calculation there are
two different cases: simple, non-repeated, or multiple, repeated, eigenvalues, being this last case much more difficult
and subtle than the former one, since multiple eigenvalues are not differentiable. There are many references where
this has been addressed, and among those we cite [2,3]. Sensitivity analysis has been applied for optimization of
eigenvalues for free vibrations together with proper model formulations like the bound formulation (see [1,4] and the
references therein).

Optimization problems involving eigenmodes, i.e. such that either cost or constraints depends on eigenmodes are
much more scarce in the literature. However, in the last years several models requiring to optimize eigenmodes or
constraining functionals depending on eigenmodes have been studied. In [5], a mode shape corresponding to a simple
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eigenvalue of a fiber laser package is designed in order to minimize the elongation of the fiber under dynamic excita-
tion. In [6], a multi-objective function is formulated in order to find optimal configurations that simultaneously satisfy
(simple) eigenfrequency, eigenmode, and stiffness requirements at certain points of a vibrating structure. A similar
problem is treated in [7]. The novelty there is to include the electromechanical coupling coefficient in the objective
function so that the energy conversion is maximized for a specific mode. In [8], eigenmodes appear in the constraints
only. One of the objectives of that work is to determine the material distribution of a structure that maximizes the fun-
damental frequency and at the same time synthesizes the first two modes. Recently, in [9] an optimization problem in
which both cost and constraints depend on eigenmodes has been studied, and furthermore, all the pathologies appear-
ing when dealing with eigenproblems are present: spurious modes, mode switching and multiple eigenfrequencies.
The objective in that paper is the optimal design of piezoelectric modal sensor/actuators, in which we simultaneously
designed the ground structure and polarization profiles of the piezoelectric transducers (see the recent survey [10]).

One of the main difficulties when dealing with eigenmode optimization is the sensitivity analysis. Eigenvector
sensitivity for structural analysis problems has been addressed in [11–19]. The first issue is about differentiability,
while eigenmodes corresponding to non-repeated eigenvalues are differentiable, eigenmodes corresponding to
repeated ones are not even continuous. This is due to the fact that there are infinite eigenvector basis of the eigenspace
associated to a multiple eigenvalue, so that this ambiguity spoils continuity and therefore differentiability. However,
differentiability can be guaranteed for a concrete eigenvector basis, the so-called adjacent basis, and for it explicit
derivative computations can be performed. Further to this, the eigenvector derivative computation leads to solve
degenerate linear systems for which specific methods have been developed [11,13,14,16,17].

Another crucial point is eigenmode selection. When a functional involved in the optimization problem, either the
cost or a constraint, depends on a mode shape it must be very clear on which specific mode shape is such a dependence,
since mode shapes change and mode switching (change of order of eigenvalues in the spectrum) happens during the
optimization process when updating variables. Therefore cost and constraints must clearly depend on selected mode
shapes. In [9], a procedure for selecting the closest mode shapes to given reference mode shapes was developed. This
procedure follows the idea and spirit of the well-known modal assurance criterion [20] but including the possibility
of repeated eigenvalues appearance. The difficulty now is that once eigenmodes have been selected, the optimization
algorithm requires derivatives for those specific eigenmodes. This is not an issue for eigenmodes associated with
non-repeated eigenvalues since those are differentiable, but if they are associated with repeated ones, then available
methods only provide derivatives for the adjacent basis of eigenvectors. For the specific situation considered by
the authors in [9], a heuristic method working out for obtaining these derivatives was developed. The aim of this
paper is to deepen those ideas whenever tracking specific mode shapes with three objectives in mind: establish a
method of eigenmode selection suitable for a wide range of situations of eigenmode optimization models, give a
general algorithm for computing derivatives of selected eigenmodes valid for the case of repeated and non-repeated
eigenvalues, and finally, analyze the mathematical foundations of the algorithm in order to show its validity. These
three objectives have been reached in this paper.

The paper is organized as follows. In Section 2 we review the main algorithms for eigenvector derivatives
computation and comment on differentiability, clarifying some misleading ideas and claims present in the literature. In
Section 3 we present a method for eigenmode selection and for the calculation of derivatives of selected eigenmodes.
The algorithm validity is numerically corroborated with two structural analysis examples. Finally, in Section 4 we
consider an example of an eigenmode optimization problem inspired by [9] in order to numerically validate the
previous algorithm in a real optimization problem.

2. Review of current methods for eigenvectors sensitivity analysis

Given K, M ∈ Rn×n real, symmetric and positive definite matrices. We are interested in the eigenproblem

(K − λM)U = 0. (1)

In structural dynamics, K stands for the stiffness matrix, M the mass matrix, λ the eigenvalues or eigenfrequencies,
i.e. the square of the natural frequencies, and U stands for the mode shape, or eigenvector, corresponding to the
eigenfrequency λ.

It is well known that under these conditions all the eigenfrequencies are real, λ1 ≤ · · · ≤ λn ∈ R, and there exists
a M-orthonormal basis of Rn made of eigenvectors U1, . . . , Un , i.e.

(K − λ j M)U j = 0 (2)
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