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Abstract

This paper introduces a coupled approach between stochastic finite element methods and an adaptive condensation technique
for the analysis of nonlinear mechanical problems under uncertainties. This coupling reduces the size of each individual nonlinear
problem solved in SFE by the use of an adaptive condensation method. The reduced stiffnesses and other quantities necessary for the
condensation technique are approximated using a second, low-order, polynomial expansion, thus taking advantage of the coupling
with SFE. This approach also features a semi-analytical technique to compute accurately distributions of structural quantities of
interest. This method is applied on an elasto-plastic steel bar with a small defect, and on a damaged beam under 4-point bending.
In both cases it predicts the random behavior of the structure quite accurately, and is able to provide higher-order models than a
state-of-the-art stochastic collocation method, for a reduced computation time.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

During the last decades, numerous methods have been developed, inside the general framework of stochastic finite
elements (SFE). These methods allow the use of finite element analysis on uncertain mechanical problems. They can
also quantify the influence on the structure of these uncertainties on quantities of interest. The Monte-Carlo (MC)
method [1,2] should be considered as the first one, and is still widely used in different application domains. However,
more recent modeling techniques offer, compared to the MC method, higher orders of convergence, and require a
reduced number of deterministic simulations [3–6]. These techniques are now used in several industrial simulation
codes [7,8]. In certain cases, they even provide directly approximations of the statistical quantities of interest [9–11]:
mean values, statistical moments, probability density functions (PDFs), etc. SFE methods are characterized by three
combined building blocks, which allow to predict the behavior of a structure under uncertainties [6].
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• A model for uncertainties (e.g. modeling of random material properties).
• A mathematical technique to solve deterministic problems (typically, direct FE simulation).
• An algorithm to propagate deterministic solutions depending on the uncertainties (e.g. perturbation, polynomial

chaos expansion).

Various methods have been developed to model the uncertainties on geometry, material properties, loading.
Techniques to propagate uncertainties through deterministic solutions have also been widely studied, and various
classes of methods are now available in literature. However, in the framework of SFE, few studies addressed the
problem of the model and of the numerical techniques to solve the deterministic problems, in particular to minimize
the computational cost [6,12]. It is especially the case for large scale nonlinear systems, for which non intrusive
approaches such as Polynomial-Chaos or collocation-based methods are generally preferred to intrusive ones.

This work presents a coupled method to solve nonlinear SFE problems at a reduced cost. It includes a deterministic
system reduction approach similar to those in [13] (using dynamic condensation) or in [14] (using static condensation).
However, the presented method:

• uses an adaptive condensation technique based on a two-level Guyan’s reduction, suitable for nonlinear mechanical
problems [15,16].

• builds a second, lower-order, metamodel. This is used for the stiffnesses, equivalent loadings and displacements
fields necessary in the condensation technique.

• provides full probability density functions (PDF) of quantities of interest thanks to a semi-analytical approach or
Monte-Carlo simulations when it is not possible.

This method may be used in mechanical engineering, to evaluate the robustness of numerical models, build fragility
curves of mechanical systems, etc. In particular, an application to civil engineering structures is proposed in this
contribution.

Firstly, the nonlinear stochastic mechanical problem to be solved is presented and formulated. Then, the proposed
method to solve it efficiently is described. A validation is performed on an heuristic test case, where the presented
SFEM is compared to analytical results. Finally, an application is presented, where the method is compared to a
state-of-the-art SFE technique.

2. Problem setting

2.1. Stochastic nonlinear mechanical problem

The problem is a general n-dimensional nonlinear mechanical problem, defined on a bounded domain Ω ϵ Rd

(d = 1, 2, 3). It is characterized by a set of r input parameters y = (y1, . . . , yr ). It is assumed that the problem
is well posed. The problem is solved using the finite element method (implemented in Cast3M [17]). The resulting
n-dimensional mechanical system is considered through a pseudo-time t . Using a discretized time τ , the problem can
be solved iteratively:

K τ (y, uτ (y))

·

uτ (y)


=

Fτ (y)


(1)

where K τ
∈ Rn,n is the stiffness matrix, uτ

∈ Rn the nodal displacement vector, and Fτ
∈ Rn the nodal force vector

(at time t = τ ). Mechanical quantities of interest can be extracted once the structural problem has been solved: they
are considered as a random vector Z = hτ (y). We consider in the following that the random input parameters can be
normalized to a standardized Gaussian random vector x = (x1, . . . , xr ) = T (y), using the Gaussian standardization
function T [18]. Given that any distribution can be generated from a standard distribution [18], this methodology
allows to chose any type of law for the actual r.v.s used in the problem (mechanical properties, random fields, etc.)
with a single SFE method. The denormalization function is therefore included in the mechanical response function
M. The random vector Z writes:

Z = hτ (y) = hτ
◦ T −1(x) = M(x). (2)

2.2. Construction of a metamodel

The input uncertain parameters y are represented using a r -dimensional vector of standard independent random
variables (r.v.s) X = T (Y ) = (X1, . . . , Xr ), defined on the probability space (Θ, F , P).
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