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Abstract

We develop a model describing the behavior of two-phase ferrofluid flows using phase field-techniques and present an energy-
stable numerical scheme for it. For a simplified, yet physically realistic, version of this model and the corresponding numerical
scheme we prove, in addition to stability, convergence and as by-product existence of solutions. With a series of numerical
experiments we illustrate the potential of these simple models and their ability to capture basic phenomenological features of
ferrofluids such as the Rosensweig instability.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

A ferrofluid is a liquid which becomes strongly magnetized in the presence of applied magnetic fields. It is a
colloid made of nanoscale monodomain ferromagnetic particles suspended in a carrier fluid (water, oil, or other
organic solvent). These particles are suspended by Brownian motion and will not precipitate nor clump under normal
conditions. Ferrofluids are dielectric (non conducting) and paramagnetic (they are attracted by magnetic fields, and do
not retain magnetization in the absence of an applied field); see [1].

Ferrofluids can be controlled by means of external magnetic fields, which gives rise to a wealth of control-based
applications. They were developed in the 1960’s to pump fuel in spacecrafts without mechanical action [2]. Recent
interest in ferrofluids is related to technical applications such as instrumentation, vacuum technology, lubrication,
vibration damping, radar absorbing materials, and acoustics [3–5]; they are used, for instance, as liquid seals for the
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drive shafts of hard disks, for vibration control and damping in vehicles and enhanced heat transfer of electronics.
Other potential applications are in micro/nanoelectromechanical systems: magnetic manipulation of microchannel
flows, particle separation, nanomotors, micro electrical generators, and nanopumps [6–10]. One of the most promising
applications is in the field of medicine, where targeted (magnetically guided) chemotherapy and radiotherapy,
hyperthermia treatments, and magnetic resonance imaging contrast enhancement are very active areas or research
[11–13]. Yet another potential applications of ferrofluids under current research is the construction of adaptive
deformable mirrors [14–16].

At the time of this writing there are two well established PDE models as a mathematical description for the behavior
of ferrofluids which we will call by the name of their developers: the Rosensweig model and the Shliomis model
(cf. [17,18]). Rigorous mathematical work on the mathematical analysis (existence of global weak solutions and local
existence of strong solutions) for the Rosensweig and the Shliomis models is very recent (cf. [19–22]).

The applications mentioned above justify the development of tools for the simulation of ferrofluids, but they
are not the only reasons. Mathematical models for ferrofluids and their scope of validity have been areas of active
research (cf. [23,24]). Most ferrofluid flows have so far been studied using exact and approximate analytical solutions
of the Rosensweig model (see for instance [25]) contrasted with experimental data. However, these flows are
analytically tractable in a very limited number of cases [25,26], and as shown for instance in [27], satisfactory model
calibration/validation is beyond the current capabilities of analytic (asymptotic and perturbation) methods. Clearly,
there is significant room for interdisciplinary work at the interface between model development, numerical analysis,
simulation and experimentation.

Both the Rosensweig and Shliomis models deal with one-phase flows, which is the case of many technological
applications. However, some applications arise naturally in the form of a two-phase flow: one of the phases has
magnetic properties and the other one does not (e.g. magnetic manipulation of microchannel flows, microvalves,
magnetically guided transport, etc.). There has been a major effort in order to develop appropriate interfacial
conditions of two-phase flows in the sharp interface regime within the micropolar theory (see [28,29]), yet we are
far from having at our disposal a mathematically and physically sound PDE model for two-phase ferrofluid flows.
There are not well established PDE models describing the behavior of two-phase ferrofluid flows. On the other hand,
systematic derivation of a two-phase model from first principles, using energy-variational techniques in the spirit of
Onsager’s principle as in [30–34], would be highly desirable, but most probably too premature, given the current state
of the art.

In this context, numerical analysis and scientific computation have a lot to offer, since carefully crafted
computational experiments can help understand much better the limits of the current models and assist the
development of new ones. Ad-hoc development (trial and error) of new models and numerical evaluation does not
replace a proper mathematical derivation, but it can clearly help to find a reasonable starting point. In this spirit, the
main goal of this work is to present a simple two-phase PDE model for ferrofluids. The model is not derived, but
rather assembled using components of already existing models and high-level (as opposite to deep) understanding
of the physics of ferrofluids. The model attempts to retain only the essential features and mathematical difficulties
that might appear in much more sophisticated models. To the best of our knowledge this contribution is the first
modeling/numerical work in the direction of time-dependent behavior of two-phase ferrofluid flows together with
energy-stable and/or convergent schemes.

Regarding pre-existing work, closely related to two-phase flows, it is worth mentioning the interdisciplinary
(including physical experiments) work of Tobiska and collaborators [35–37] in the context of stationary configurations
of free surfaces of ferrofluids using a sharp interface approach. Other models for two-phase ferrofluid flows, this time
for non-stationary phenomena, are presented in [38–40], using either Level-Set or Volume of Fluid methods, but very
little details are given about their actual numerical implementation, stability or convergence properties.

Our presentation is organized as follows: in Section 2 we select the components of our two-phase model and
assemble it. In Section 3 we derive formal energy estimates which will serve as basis for the development of an
energy-stable scheme in Section 4; in Section 4.3 we prove that the scheme always has a solution. In Section 5, we
propose a simplification of the model with a more restrictive scope of physical validity. We present the corresponding
numerical scheme, and prove its stability and convergence in Section 5.1 and Section 5.2 respectively. Finally, we
show the potential of the model in Section 6 with a series of insightful numerical experiments. They include the
Rosensweig instability with uniform and non-uniform applied magnetic fields, the latter leading to an open pattern of
spikes.
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