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Abstract

The flexibility of the DPG methodology is exposed by solving the linear elasticity equations under different variational
formulations, including some with non-symmetric functional settings (different infinite-dimensional trial and test spaces). The
family of formulations presented is proved to be mutually ill or well-posed when using traditional energy spaces on the whole
domain. Moreover, they are shown to remain well-posed when using broken energy spaces and interface variables. Four variational
formulations are solved in 3D using the DPG methodology. Numerical evidence is given for both smooth and singular solutions
and the expected convergence rates are observed.
Published by Elsevier B.V.
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1. Introduction

In this paper we demonstrate the fitness of the DPG finite element method with optimal test spaces on various
variational formulations of the nondimensionalized equations of linear elasticity,

− div(C : ε(u)) = f, in Ω ,
u = u0, on Γ0,

(C : ε(u)) · n = g, on Γ1.

(1.1)

We take Ω to be a simply connected smooth domain in R3 and let Γ0 and Γ1 be a partition of the boundary,
Γ0 ∪ Γ1 = ∂Ω with outward unit normal, n. Here, u is the displacement, ε(u) =

1
2 (∇u + ∇uT) is the associated

strain, f is the body force, g is the traction,1 and u0 is the prescribed displacement. Meanwhile, C : S → S, is the
elasticity or stiffness tensor, where S denotes all symmetric 3 × 3 matrices. For isotropic materials, it is expressed as
Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk), where λ and µ are the Lamé parameters.

∗ Corresponding author.
E-mail address: brendan@ices.utexas.edu (B. Keith).

1 If Γ1 = ∂Ω , then f and g must satisfy Signorini’s compatibility condition

Ω f · v dΩ +


Γ1

g · v dΓ = 0 for all infinitesimal rigid
displacements, v.
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It can be shown that the standard Bubnov–Galerkin finite element method for linear elasticity computes the unique
minimizer of the energy functional E1(v) =


Ω (

1
2ε(v) : C : ε(v)− f · v) dΩ −


Γ1

g · v dΓ , over all candidates, v, in
a discrete space of displacements, Uh . By proceeding from an energy minimization we guarantee to compute the best
possible solution (measured in the energy) allowed in our set of computable solutions (trial space). In this sense, the
formulation has the obvious desirable quality that there is a meaningful metric of solution relevance as measured by
the energy functional. The typical approach in commercial software is to use exactly the standard Bubnov–Galerkin
variational formulation to simulate and predict elastic behavior in materials.

Notwithstanding the above method, there are important circumstances where such a simple energy minimization
principle is avoided. Another prominent variational formulation for linear elasticity is the well-known mixed
method [1]. These discretizations stem from the minimax problem on the Hellinger–Reissner energy functional
E2(τ, v) = −


Ω

 1
2τ : C−1

: τ + divτ · v + f · v


dΩ +

Γ0

u0 · (τ · n) dΓ [2], an energy principle equivalent

to minimization of E1 [3,4]. Here v is a displacement variable and τ = τT is a stress variable. Such a formulation
results in a discretization which avoids volumetric locking and also guarantees a locally conservative stress tensor [1].
Of course, this formulation also guarantees a best possible solution although it is measured in a different way and the
trial spaces differ.

Likewise, other energy principles exist for linear elasticity problems. In fact, just for this single problem a total
of 14 complementary-dual energy principles are presented in [5], each leading to a different variational formulation.
Some may not be easily amenable to computation but perspective should be given that there is little to regard as sacred
or more physical about one formulation over another. Ultimately, whatever the physical principle (energy functional)
employed, the equations of linear elasticity are ubiquitous; beyond their functional setting, they do not change even
though they can be derived in different ways and posed over different spaces. In principle, at the infinite-dimensional
level the solution will always be the same but at the computational level the differences can become very important.

In the DPG method, we do not make a quandary over the best physical principle to employ for our choice of
optimality. Instead, without access to the exact solution outright, we seek the best numerical solution available to us
once the trial space and variational formulation are set. This is achieved by considering a minimization problem on
the residual of the discrete solution taken through a user-defined norm in the discrete test space. The ramifications of
this methodology are substantial, however analyzing most of them is not the particular focus of this paper. Instead,
we intend only to demonstrate the utility of the methodology on various variational formulations. We will now outline
some of the history and recent developments of DPG.

The optimal stability DPG methodology [6,7], referred here simply as “DPG”, was originally envisioned as a
practical Petrov–Galerkin finite element method which would naturally transfer the stability of the infinite dimensional
problem onto the discrete system. This is achieved by exploiting a natural isometry between a Hilbert space and its
dual, called the Riesz map, and the ability to localize its computation by using broken test spaces. In a difficult
problem, instead of tuning stability parameters as is commonplace in standard stabilized methods, the DPG method
algorithmically approximates an optimal test space to a tunable accuracy in a way that applies to all well-posed
variational problems. The tuning parameter in the DPG method is usually the order of a local test space called the
enriched test space where the Riesz map (in the user-defined norm) is computed. The larger this parameter, the more
accurate the approximation of the optimal test space. For every computation in this paper we found it sufficient to
choose an enriched test space one order larger than the trial space. Using a larger enrichment may not be a great
hindrance, because the feasibility of the method is offered from the fact that all computations on this higher order
enriched space are localized. Therefore, provided the element-local computations have been distributed (which can
be done in parallel) and are made efficiently, the computational cost of the method is essentially independent of the
enrichment parameter. However, each element-local computation can sometimes be computationally intensive if the
enrichment parameter is too high. In this context, the choice of the user-defined norm of the test space can play
a fundamental role in efficiently obtaining a well-approximated optimal test space while only requiring a modest
enrichment parameter.

DPG distinguishes the trial and test space differently from the outset and because of this trait it is applicable to often
neglected, non-symmetric variational formulations. This originally led to the DPG method with ultraweak variational
formulations, a formulation wherein the trial space is naturally discontinuous. Some highlights of ultraweak variational
formulations are given in [8–11]. Indeed, in this setting, DPG has largely been applied to singular perturbation
problems and other problems in computational mechanics where stability is difficult to achieve such as advection
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