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Abstract

In this work a novel approach is presented for the isogeometric Boundary Element analysis of domains that contain inclusions
with different elastic properties than the ones used for computing the fundamental solutions. In addition the inclusion may exhibit
inelastic material behavior. In this paper only plane stress/strain problems are considered.

In our approach the geometry of the inclusion is described using NURBS basis functions. The advantage over currently used
methods is that no discretization into cells is required in order to evaluate the arising volume integrals. The other difference to
current approaches is that Kernels of lower singularity are used in the domain term. The implementation is verified on simple finite
and infinite domain examples with various boundary conditions. Finally a practical application in geomechanics is presented.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric analysis [1] has gained significant popularity in the last decade because of the fact that geometry
data can be taken directly from Computer Aided Design (CAD) programs, potentially eliminating the need for mesh
generation. A true companion to CAD is the Boundary Element Method (BEM) because both employ a surface
definition of the problem to be solved.

However, with a pure surface discretization the BEM can only analyze homogeneous, elastic domains. The method
will be extended here to include heterogeneous, inelastic domains by introducing volume effects. We explain this on
an elastic domain with an inclusion V0 where body forces are present. Using the theorem of Betti as explained in [2],
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Fig. 1. Explanation of the derivation of the integral equation with volume effects.

the boundary integral equation can be written in incremental form and in matrix notation as:

c u̇(y) =


S

U(y, x)ṫ(x) d S +


S0

U(y, x̄)ṫ0(x̄) d S0 −


S

T(y, x)u̇(x) d S +


V0

U(y, x̄)ḃ0(x) d V0 (1)

where c is a free term, U(y, x) and T(y, x) are matrices containing fundamental solutions for the displacements and
tractions at a point x due to a source at a point y [3], u̇(x) and ṫ(x) are increments of the displacement and traction
vectors on the surface S, defining the problem domain (see Fig. 1). ḃ0(x̄) are increments of body force inside the
inclusion and ṫ0(x̄) are increments of tractions related to the body force acting on surface S0 bounding V0.

Remark 1. In all previous work on elasto-plasticity, integral equations are used that involve a higher singularity
Kernel in the volume integral and the direct use of initial stresses instead of body forces. Here we use a different
approach involving body forces and a lower singularity Kernel. The derivation of the integral equations is shown in
the Appendix.

The integral equations can be solved for the unknowns u or t by discretization. As in majority of previous work on
the isogeometric BEM [4–10] we use the collocation method, i.e. we write the integral equations for a finite number
N source points yn

c u̇ (yn) =


S

U (yn, x) ṫ (x) d S +


S0

U (yn, x̄) ṫ0 (x̄) d S0

−


S

T (yn, x) u̇ (x) d S +


V0

U (yn, x̄) ḃ0 (x̄) d V0 (2)

with n = {1, . . . , N }. For the discretization of the surface integrals over S we divide the boundary into patches and
use a geometry independent field approximation approach for each patch, i.e. we use different basis functions for the
description of the geometry and for the field values.
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=
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k
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(3)

In above equations the superscript e refers to the number of the patch, Rk , Rd
k and Rt

k are NURBS basis functions with
respect to the local coordinate u of the parametrization for the geometry, displacements and tractions respectively.
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