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Highlights

• Time harmonic acoustic problems are simulated with maximum entropy meshless methods.
• Maximum entropy basis functions handle dispersion errors better than finite elements.
• Short wavelength propagation problems can be studied with coarser discretizations.
• A blending with Isogeometric functions is possible on the boundary of the domain.
• Several examples are studied, including a 2D car cavity model defined by B-Splines.

Abstract

This paper explores the application of maximum-entropy methods (max-ent) to time harmonic acoustic problems. Max-ent
basis functions are mesh-free approximants that are constructed observing an equivalence between basis functions and discrete
probability distributions and applying Jaynes’s maximum entropy principle. They are C∞-continuous and therefore they are
particularly suited for the resolution of Helmholtz problems, where classical finite element methods show a poor accuracy in
the high frequency region. In addition, it was recently shown that max-ent approximants can be blended with isogeometric basis
functions on the boundary of the domain. This preserves the correct representation of the boundary like in Isogeometric Analysis,
with the advantage that the discretization of the interior of the domain is straightforward. In this paper the max-ent mathematical
formulation is reviewed and then some numerical applications are studied, including a 2D car cavity geometry defined by B-spline
curves. In all cases, if the same nodal discretization is used, finite elements results are significantly improved.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Over the last few years the acoustic properties of a product have become an important criterion in many design
problems. This increasing demand on the acoustic performance raised a strong need for numerical prediction tools
which allow a reliable evaluation of different design alternatives without expensive experimental studies.
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Several techniques are nowadays available for the simulation of the acoustic wave propagation, addressed by
the Helmholtz equation. Among these, the Finite Element Method (FEM) [1] and the Boundary Element Method
(BEM) [2] have been widely studied in the literature. The most important advantage of BEM is the dimension
reduction of the physical problem. However, it requires significant computational times because it works with full,
complex and frequency-dependent matrices. For this reason, the FEM is the most employed numerical technique in
commercial simulation tools for interior problems. Nevertheless, some drawbacks are still present. It is well known in
the FEM literature that the accuracy of the numerical results heavily depends on the regularity of the mesh used for
the discretization [3]. Although many powerful mesh generation algorithms are available nowadays [4], this operation
may take a significant part of the total analysis time, especially in three-dimensional applications. In addition, the mesh
generation process can rarely be automated and therefore important human resources are required in the preprocessing
stage. Another well known problem that affects the FEM is the poor accuracy in the high frequency region, due to
pollution errors, [1,5,6] which makes the short wave acoustic problem one of the still unsolved problems in the FEM
environment [7].

Numerical methods with higher continuity of the basis functions, such as Isogeometric Analysis (IGA) [8], are
expected to better handle the latter drawback. In [9] IGA is applied to the simulation of structural vibration problems
and it is shown to outperform the standard FEM in the high frequency region. The main purpose of IGA is to integrate
the Computer Aided Design (CAD) and the analysis stages by using the same basis functions for the geometric
representation and for the numerical analysis. By doing so, the geometrical errors that are introduced by the FEM
discretization on the boundary of the domain are avoided. Unfortunately IGA does not possess the same flexibility as
the standard FEM in discretizing complexly shaped domains. Some modified formulations based on T-splines [10],
hierarchical B-splines [11] and trimming techniques [12] have been proposed for two-dimensional applications but
the problem is still open in 3D. In [13] an isogeometric boundary element method based on T-splines is proposed;
with this approach the interior parametrization of the domain is no longer required, but as in the classical BEM, fully
populated matrices are obtained. In contrast to this method, which is a direct BEM, the NURBS-based technique
proposed in [14] is an indirect BEM, which also allows the modeling of open boundary domains. Such boundaries are
very common in vibroacoustic problems.

Another family of higher order continuity schemes, whose application to acoustic problems has been recently
studied, are the mesh-free (or meshless) approximation schemes [15]. The earliest meshless methods are the somehow
equivalent Element Free Galerkin Method (EFGM) [16] and Reproducing Kernel Particle Method (RKPM) [17].
These methods use a Moving Least Squares approach [18] to construct the basis functions that, as a consequent
drawback, are not strictly positive and do not possess the Kronecker-Delta property on the boundary of the domain,
which requires additional efforts to impose essential boundary conditions [19]. The latter problem is solved in the
Point Interpolation Method (PIM) [20] where polynomial interpolants that pass through each node are obtained. By
using Radial Basis Functions, the RPIM, which is better suited for arbitrarily scattered sets of points, was subsequently
developed [21].

An interpolatory approximation is also obtained in the Natural Element Method (NEM) [22], where the basis
functions are constructed using the Delaunay triangulation and the Voronoi diagram of the nodes. NEM basis functions
are non-negative and possess the Kronecker-Delta property, but their evaluation requires a significant computational
effort [23].

In more recent studies, the Jaynes’s maximum entropy principle [24] was used for the construction of
polygonal interpolants [25] and then generalized for the definition of the local maximum-entropy (LME) mesh-free
approximants [26]. In contrast to the previous mesh-free schemes these approximants are C∞ everywhere within
the convex-hull of the computational grid, they are strictly non-negative and they possess the weak Kronecker-Delta
property on the faces of the convex-hull. Additionally, it was recently shown that the max-ent formalism can be used
to blend the LME approximants with isogeometric basis functions [27]. In particular, the boundary of the domain is
described with a NURBS curve and isogeometric functions are associated to the control points that define the curve.
Then the LME approximants are calculated in the interior of the domain and they are blended with the NURBS
functions on a thin region close to the boundary. Thanks to this approach, the IGA difficulties in the parametrization
of complexly shaped surfaces are avoided and, at the same time, the geometrical error on the boundary, which like for
FEM is present also for Galerkin based meshless formulations, can be avoided as well.

Despite their recent introduction, many applications of max-ent methods have emerged over the last years,
including thin shell analysis [28], reduced order modeling of mechanical systems [29], convection–diffusion
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