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Space–time isogeometric analysis of parabolic evolution problems
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Abstract

We present and analyze a new stable space–time Isogeometric Analysis (IgA) method for the numerical solution of parabolic
evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space
with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and
approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The
theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider the parabolic initial–boundary value problem: find u : Q → R such that

∂t u − ∆u = f in Q, u = 0 on Σ , and u = u0 on Σ0, (1.1)

as the typical model problem for a linear parabolic evolution equation posed in the space–time cylinder Q =

Ω × [0, T ] = Q ∪ Σ ∪ Σ0 ∪ ΣT , where ∂t denotes the partial time derivative, ∆ is the Laplace operator, f is a given
source function, u0 are the given initial data, T is the final time, Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), Σ0 := Ω × {0},
ΣT := Ω × {T }, and Ω ⊂ Rd(d = 1, 2, 3) denotes the spatial computational domain with the boundary ∂Ω . For the
time being, we assume that the domain Ω is fixed, bounded and Lipschitz. In many practical, in particular, industrial
applications, the domain Ω , that is also called physical domain, is usually generated by some CAD system, i.e., it
can be represented by a single patch or multiple patches which are images of the parameter domain (0, 1)d by spline
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or NURBS maps. Parabolic initial–boundary value problems of the form (1.1) arise in many practical applications.
For instance, heat conduction and diffusion processes but also evolution processes in life and social sciences can be
modeled by (1.1) or by (1.1) with a more general elliptic part. Sometimes Eq. (1.1) is called heat conduction, diffusion,
or potential equation. In electromagnetics, the z-component of the vector potential solves (1.1) in the case of a 2d eddy
current problem.

The standard discretization methods in time and space are based on time-stepping methods combined with some
spatial discretization technique like the Finite Element Method (FEM) [1,2]. The vertical method of lines discretizes
first in time and then in space [1], whereas in the horizontal method of lines, also called Rothe’s method, the discretiza-
tion starts with respect to (wrt) the time variable [2]. The later method has some advantages wrt the development of
adaptive techniques. However, in both approaches, the development of really efficient adaptive techniques suffers
from the separation of the time and the space discretizations. Moreover, this separation is even more problematic in
parallel computing. The curse of sequentiality of time affects the construction of efficient parallel methods and their
implementation on massively parallel computers with several thousands or even hundreds of thousands of cores in a
very bad way.

The simplest ideas for space–time solvers are based on time-parallel integration techniques for ordinary differential
equations that have a long history, see [3] for a comprehensive presentation of this history. The most popular parallel
time integration method is the parareal method that was introduced by Lions, Maday and Turinici in [4]. Time-parallel
multigrid methods have also a long history. In 1984, Hackbusch proposed the so-called parabolic multigrid method that
allows a simultaneous execution on a set of successive time steps [5]. Lubich and Ostermann [6] introduced parallel
multigrid waveform relaxation methods for parabolic problems. A comprehensive presentation of these methods and
a survey of the references until 1993 can be found in the monograph [7]. Vandewalle and Horton investigate the
convergence behavior of these time-parallel multigrid methods by means of Fourier mode analysis [8]. Deshpande
et al. provided a rigorous analysis of time domain parallelism [9]. Very recently, Gander and Neumüller have also
used the Fourier analysis to construct perfectly scaling parallel space–time multigrid methods for solving initial value
problems for ordinary differential equations [10] and initial–boundary value problems for parabolic PDEs [11]. In
these two papers, the authors construct stable high-order dG discretizations in time slices. In [12], this technique
is used to solve the arising linear system of a space–time dG discretization, which is also stable in the case of the
decomposition of the space–time cylinder into 4d simplices (pentatopes) for 3d spatial computational domains. This
idea opens great opportunities for flexible discretizations, adaptivity and the treatment of changing spatial domains in
time [13,14,12,15]. We also refer to [16–25] where different space–time techniques have been developed. Babuška and
Janik already developed h-p versions of the finite element method in space with p and h-p approximations in time for
parabolic initial–boundary value problems in the papers [26] and [27], respectively. In [28], Schwab and Stevenson
have recently developed and analyzed space–time adaptive wavelet methods for parabolic evolution problems, see
also [29]. Similarly, Mollet proved uniform stability of an abstract Petrov–Galerkin discretizations of boundedly
invertible operators and applied this result to space–time discretizations of linear parabolic problems [30]. Very
recently Urban and Patera have proved error bounds for reduced basis approximation to linear parabolic problems [31],
whereas Steinbach has investigated conforming space–time finite element approximations to parabolic problems [32].
Our approach uses special time-upwind test functions which are motivated by a space–time streamline diffusion
method [33–36] and by a similar approach used in [37] and [38]. The increasing interest in highly time-parallel
space–time methods is certainly connected with the fact that parallel computers have rapidly developed with respect to
number of cores, computation speed, memory, availability etc., but also with the complexity of the problems the people
want to solve. In particular, the optimization of products and processes on the basis of computer simulations of the
underlying transient processes (PDE constraints) foster the development of space–time methods since the optimality
system is basically nothing but a system of primal and adjoint PDEs which are coupled forward and backward in
time, see, e.g., [39]. In fact, there are several papers on the use of various space time-methods for solving exciting
engineering problems like fluid–structure interaction, aerodynamics problems and cardiac electro-mechanics see [40–
45], and the references therein. These papers show the great potential of space–time methods for solving complex
problems, in particular, problems with moving boundaries or interfaces. The use of B-splines and NURBS for both
representing moving boundaries and approximating the solution of the PDE system we are looking for, enhances the
accuracy and flexibility of the simulation considerably, see [40–44]. In combination with a full space–time adaptivity
and parallelization in space and time, these methods can be very efficient on current and future computers with many
thousand or even millions of cores. Whereas space–time IgA technologies are already used for solving engineering
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