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b Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg,

Germany

Received 20 July 2014; received in revised form 20 August 2015; accepted 2 October 2015
Available online 12 November 2015

Dedicated to Professor Ivo Babuška

Abstract

This paper presents a residual-based a posteriori error estimator for the Arnold–Winther mixed finite element that utilises a
post-processing for the skew-symmetric part of the strain. Numerical experiments verify the proven reliability and efficiency for
suitable approximation of the skew-symmetric deformation gradient. Numerical evidence supports that the L2-stress error estimator
is robust in the Poisson ratio and allows stable error control even in the incompressible limit.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The problem in linear elasticity considers the connected reference configuration of the elastic body Ω ⊂ R2 with
polygonal boundary ∂Ω = ΓD ∪ΓN with closed and connected ΓD of positive surface measure and ΓN = ∂Ω \ΓD for
applied tractions. Given a volume force f : Ω → R2, a displacement u D : ΓD → R2, and a traction g : ΓN → R2,
find a displacement u : Ω → R2 and a stress tensor σ : Ω → S := {τ ∈ R2×2

: τ = τ T
} such that

− div σ = f, σ = Cε(u) in Ω ,
u = u D on ΓD, σν = g on ΓN .

(1.1)

Throughout this paper, C denotes the bounded and positive definite fourth-order elasticity tensor for isotropic linear
elasticity. The symmetric mixed finite element method is a very popular choice for a robust stress approximation;
cf. [1–6] for details and related references.
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The a posteriori error analysis for the Arnold–Winther finite element method may follow the ideas of [7–9] to
derive a stress error control

∥σ − σAW ∥
2
C−1 ≤ min

v∈V
∥C−1σAW − ε(u D + v)∥2

C + C1osc2( f, T )+ C2osc2(g, E(ΓN ))

for the stress error σ − σAW even with a rather explicit estimate of the constant in front of the oscillations and the
(unwritten) multiplicative constant 1 in front of the first term that measures the quality of the approximation C−1σAW
of symmetric gradients ε(v) := (Dv+ DT v)/2 for v ∈ V . The space V consists of all square-integrable displacements
with homogeneous boundary conditions along ΓD and with a square-integrable functional matrix Dv.

A severe additional difficulty of this approximation is that only the symmetric part is approximated and not the
full gradient Dv so that [9] cannot be applied for a residual-based a posteriori error estimation of the aforementioned
first term. Other mixed finite element schemes like PEERS in [7] involve some additional variable to approximate the
asymmetric part of the gradient. This paper presents an explicit error estimate which involves an arbitrary asymmetric
approximation γh and provides an abstract a posteriori error control of the residual type, which is useful for adaptive
mesh-refining algorithms,

η2
ℓ = osc2( f, T )+ osc2(g, E(ΓN ))+


T ∈T

h2
T ∥ curl(C−1σAW + γh)∥

2
L2(T )

+


E∈E(Ω)

hE∥[C−1σAW + γh]EτE∥
2
L2(E) +


E∈E(ΓD)

hE∥(C−1σAW + γh − Du D)τ∥
2
L2(E).

(The details on the standard notation can be found below for computable volume contributions on a triangle T of
diameter hT and various jumps across an edge E of length hE .) For any (piecewise smooth) choice of γh , this a
posteriori error estimator is reliable in the sense that

∥σ − σAW∥C−1 ≤ Crelηℓ (1.2)

with some λ-independent constant Crel ≈ 1. One opportunity to ensure efficiency is a global minimisation over all
piecewise polynomial γh of the error estimator ηℓ. The bubble function technique shows that the particular choice of
γh enters the efficiency estimates with some λ-independent constant Ceff ≈ 1,

ηℓ ≤ Ceff

∥σ − σAW∥C−1 + ∥skew(Du)− γh∥L2(Ω)


. (1.3)

Hence, one efficient choice for γh is to choose it as a sufficiently accurate polynomial approximation of the
asymmetric gradient skew(Du) := (Du − DT u)/2. Since a global approximation or even minimisation may be
too costly, this paper proposes to apply a post-processing step to compute such a sufficiently accurate approximation
γh = skew(Du∗

AW ) for the post-processed displacement u∗

AW in the spirit of Stenberg [10]. The approximation γh =

skew(Du∗

AW ) is proven to be robust in the Poisson ratio ν → 1/2 for sufficiently smooth functions. For domains with
re-entrant corners or incompatible boundary conditions, numerical experiments confirm that the proposed computation
of γh leads empirically to reliable and efficient a posteriori error control independent of the Poisson ratio ν → 1/2.

The remaining parts of this paper are organised as follows. In Section 2 the notation, the weak formulation of (1.1)
and the Arnold–Winther finite element space [1] are defined. Section 3 derives the a posteriori error analysis for the
residual-based a posteriori error estimator and proves reliability and efficiency. Section 4 outlines a post-processing of
the displacement that leads to an approximation γh of the asymmetric gradient. Section 5 presents numerical results
of four benchmark problems that verify reliability and efficiency of the residual-based a posteriori error estimator in
combination with the post-processing and illustrates its robustness for Poisson ratio ν → 1/2.

The main parts of this research are restricted to 2D because the Argyris finite element method is employed to allow
for a quasi-interpolation in the Arnold–Winther finite element functions.

2. Preliminaries

For v = (v1, v2) ∈ R2 and τ = (τ jk) j,k=1,2 ∈ R2×2, set

Curl(v) :=


∂v1/∂y −∂v1/∂x
∂v2/∂y −∂v2/∂x


, curl τ :=


∂τ12/∂x − ∂τ11/∂y
∂τ22/∂x − ∂τ21/∂y


, div τ :=


∂τ11/∂x + ∂τ12/∂y
∂τ21/∂x + ∂τ22/∂y


.
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