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Abstract

A spectral element formulation of the immersed boundary method (IBM) is presented. The spectral element formulation
(SE-IBM) is a generalisation of the finite element immersed boundary method (FE-IBM) based on high-order approximations
of the fluid variables. Several schemes for tracking the movement of the immersed boundary are considered and a semi-implicit
Euler scheme is shown to offer advantages in terms of accuracy and efficiency. High-order spectral element approximations provide
improved area conservation properties of the IBM due to the incompressibility constraint being more accurately satisfied. Superior
orders of convergence are obtained for SE-IBM compared with FE-IBM in both L2 and H1 norms. The area conservation and
convergence properties of the scheme are demonstrated on a series of benchmark problems.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

In a classical formulation of a fluid–structure interaction problem, the fluid and structure are treated separately
where the fluid is solved on a time-dependent domain and coupled to the structure equations using appropriately
chosen interface conditions. The fluid–structure system of equations is then solved computationally using either a
partitioned approach or a monolithic approach. A monolithic approach involves solving a single non-linear system
of equations for both the fluid and the structure. A partitioned approach involves two systems of equations which
are solved separately and then coupled together by interface conditions. A common approach in the literature is to
formulate the fluid equations using the Arbitrary–Lagrangian–Eulerian (ALE) technique (see e.g. [1,2]). One of the
major drawbacks of the classical approach is the computational time required — remeshing is often needed as the
computational domain for the fluid equations is time-dependent. ALE was introduced to overcome the difficulties
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caused by the reconstruction of the mesh in time. In a fluid–structure interaction problem, the fluid is considered in
an ALE formulation and the structure in a Lagrangian formulation [2]. The ALE formulation introduces an additional
frame of reference, called the referential frame or configuration, which tracks the motion of the mesh. The classical
approach to fluid–structure interaction problems using an ALE formulation is quite complex, particularly the interface
conditions which have to be formulated using the so-called ALE map. Additionally, an ALE formulation can be
computationally expensive when large deformations are considered. An alternative approach was introduced by Peskin
and is called the immersed boundary method (IBM).

The immersed boundary method (IBM), proposed by Peskin for studying flow patterns around heart valves [3],
has been applied to a wide range of problems including arterial blood flow [4], modelling of the cochlea [5],
modelling of red blood cells in Poiseuille flow [6] and flows involving suspended particles [7]. A comprehensive
list of applications can be found in [8]. The IBM is both a mathematical formulation and a numerical scheme for
fluid–structure interaction problems. As mentioned above, in a classical fluid–structure interaction problem, the fluid
and the structure are considered separately and then coupled together via some suitable jump conditions. In the IBM
however, the structure – which is usually immersed in a Newtonian fluid – is viewed as being part of the surrounding
fluid. This means that only a single equation of motion needs to be solved (i.e. a one-phase formulation). Additionally,
the IBM allows the immersed structure to move freely over the underlying fluid mesh, alleviating the need for the
remeshing required in a classical formulation.

The IBM replaces the immersed structure with an Eulerian force distribution. This Eulerian force distribution is
calculated by spreading a Lagrangian force density to the underlying fluid using the Dirac delta distribution. The
position of the immersed structure is then automatically tracked in an interpolation phase, where the local fluid
velocity is interpolated onto the immersed structure using the Dirac delta distribution. For numerical computations, a
smoothed approximation of the delta distribution is required and the same approximation must be used for both the
spreading and the interpolation phases.

The original IBM proposed by Peskin [3] is based on a couple of assumptions: the immersed structure is fibrous
and the viscosity is constant throughout the computational domain. While the first assumption may be physically
realistic in certain cases, the second assumption is in general not desirable. The immersed finite element method
(IFEM) proposed by Zhang et al. [9] used finite elements for both the fluid and the immersed structure. Using finite
elements for the structure alleviates the first assumption in the original IBM and allows for a more physically realistic
representation of a thick immersed structure. Additionally, IFEM used the Reproducing Kernel Particle Method
(RKPM) to construct an approximation to the Dirac delta distribution. The approximation used in the original IBM
is C1 continuous. However, the approximation constructed from RKPM is C N continuous as RKPM allows the exact
reconstruction of polynomials of degree N . The finite element immersed boundary method (FE-IBM), proposed by
Boffi and Gastaldi [10], also overcomes the first assumption of the original IBM and this is the method adopted in this
paper. Like IFEM, the FE-IBM uses finite elements for both the fluid and the immersed structure. However the key
difference between the two methods is that FE-IBM does not numerically approximate the Dirac delta distribution.
Instead, the interaction is governed within a weak formulation using the action of the delta distribution on a test
function and using the sifting property of the delta function. Both the IFEM and FE-IBM, suffer from the limitation
of constant viscosity throughout the computational domain.

In this paper, we apply a high-order method to the FE-IBM, which we call the spectral element immersed boundary
method (SE-IBM). The aim of using a high-order method is to improve the accuracy of the spreading and interpolation
phases and thus improve the order of convergence of the velocity and pressure variables.

This paper is constructed as follows: Sections 2 and 3 are concerned with the fluid equations and the derivation of
the FE-IBM. Section 4 discusses the spatial discretisation and Section 5 summarises the temporal stability properties of
the SE-IBM. Section 6 illustrates the area conservation of the SE-IBM and finally Section 7 illustrates the application
of the SE-IBM to some well known benchmark problems. Section 8 presents our conclusions and discusses avenues
for future work.

2. Newtonian fluid

Let Ω f
t , t ∈ (t0, T ] (where t0 and T are the initial and final times respectively), be the time-dependent fluid domain.

The equations governing the motion of an incompressible fluid flow can be characterised by the incompressible
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