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Abstract

The Flux Reconstruction (FR) approach offers an efficient route to achieving high-order accuracy on unstructured grids. Addi-
tionally, FR offers a flexible framework for defining a range of numerical schemes in terms of so-called FR correction functions.
Recently, a one-parameter family of FR correction functions were identified that lead to stable schemes for 1D linear advection
problems. In this study we develop a procedure for identifying an extended range of stable, symmetric, and conservative FR correc-
tion functions. The procedure is applied to identify ranges of such correction functions for various orders of accuracy. Numerical
experiments are undertaken, and the results found to be in agreement with the theoretical findings.
c⃝ 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

High-order methods for computational aerodynamics on unstructured grids offer the promise of increased accuracy
at reduced cost, within the vicinity of complex engineering geometries. As such they have garnered continued interest
over the past decades. However, to-date, their ‘real-world’ adoption in both industry and academia remains limited [1].
In 2007 Huynh proposed the Flux Reconstruction (FR) approach to high-order methods [2]. Based on a differential
form of the governing system, it is hoped FR (also referred to as Lifting Collocation Penalty [3] or Correction
Procedure via Reconstruction [4]) will facilitate adoption of high-order methods amongst a wider community of
fluid dynamicists.

Various properties of FR schemes, including their dispersion and dissipation characteristics [5,6], their associated
Courant–Friedrichs–Lewy (CFL) limit [2,5], and their fundamental stability [7], are all determined in full or in part
by the form of their associated FR correction functions. These correction functions act to lift inter-element flux
jumps from the boundary into the interior of each element. Building on the work of Huynh [2] and Jameson [8],
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Vincent, Castonguay and Jameson recently identified a one-parameter family of correction functions that lead to
stable FR schemes for 1D linear advection problems [7]. Identification of these correction functions, henceforth
referred to as Vincent–Castonguay–Jameson–Huynh (VCJH) correction functions, provided significant insight into
stability properties various FR schemes. However, further work is required in order to determine a full specification of
the necessary and sufficient conditions that should be imposed on correction functions in order to guarantee stability.

In this study we develop a procedure for identifying an extended range of stable, symmetric, and conservative FR
correction functions. The procedure is applied to identify ranges of such correction functions for various orders or
accuracy. In all cases the original one-parameter VCJH correction functions are found to be a sub-set of the extended
ranges. Numerical experiments are undertaken in order to verify the theoretical findings.

2. Flux reconstruction

2.1. Overview

FR schemes are similar to nodal DG schemes, which are arguably the most popular type of unstructured
high-order method (at least in the field of computational aerodynamics). Like nodal DG schemes, FR schemes utilise
a high-order (nodal) polynomial basis to approximate the solution within each element of the computational domain,
and like nodal DG schemes, FR schemes do not explicitly enforce inter-element solution continuity. However, unlike
nodal DG schemes, FR methods are based solely on the governing system in a differential form. A description of the
FR approach in 1D is presented below. For further information see the original paper of Huynh [2].

2.2. Preliminaries

Consider solving the following 1D scalar conservation law

∂u

∂t
+

∂ f

∂x
= 0 (2.1)

within an arbitrary domain Ω , where x is a spatial coordinate, t is time, u = u(x, t) is a conserved scalar quantity
and f = f (u) is the flux of u in the x direction. Additionally, consider partitioning Ω into N distinct elements, each
denoted Ωn = {x |xn < x < xn+1}, such that

Ω =

N−1
n=0

Ωn,

N−1
n=0

Ωn = ∅. (2.2)

The FR approach requires u is approximated in each Ωn by a function uδ
n = uδ

n(x, t), which is a polynomial of
degree k within Ωn , and identically zero elsewhere. Additionally, the FR approach requires f is approximated in each
Ωn by a function f δ

n = f δ
n (x, t), which is a polynomial of degree k + 1 within Ωn , and identically zero elsewhere.

Consequently, when employing the FR approach, a total approximate solution uδ
= uδ(x, t) and a total approximate

flux f δ
= f δ(x, t) can be defined within Ω as

uδ
=

N−1
n=0

uδ
n ≈ u, f δ

=

N−1
n=0

f δ
n ≈ f, (2.3)

where no level of inter-element continuity in uδ is explicitly enforced. However, f δ is required to be C0 continuous at
element interfaces.

Note the requirement that each f δ
n is one degree higher than each uδ

n , which consequently ensures the divergence
of f δ

n is of the same degree as uδ
n within Ωn .

2.3. Implementation

From an implementation perspective, it is advantageous to transform each Ωn to a standard element Ω S = {x̂ |−1 ≤

x̂ ≤ 1} via the mapping

x̂ = Γn(x) = 2


x − xn

xn+1 − xn


− 1, (2.4)
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