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Highlights

This paper develops a stochastic multiscale model for polycrystalline materials.

At the finest scale, the material is modeled using a random Voronoi tessellation.
Homogenization of SVEs leads to a stochastic characterization at the mesoscale.

A random field of the meso-scale elastic tensor is then generated.

The meso-scale uncertainties are then propagated to the structural scale using a SFEM.

Abstract

The aim of this work is to develop a stochastic multiscale model for polycrystalline materials, which accounts for the uncer-
tainties in the micro-structure. At the finest scale, we model the micro-structure using a random Voronoi tessellation, each grain
being assigned a random orientation. Then, we apply a computational homogenization procedure on statistical volume elements to
obtain a stochastic characterization of the elasticity tensor at the meso-scale. A random field of the meso-scale elasticity tensor can
thus be generated based on the information obtained from the SVE simulations. Finally, using a stochastic finite element method,
these meso-scale uncertainties are propagated to the coarser scale. As an illustration we study the resonance frequencies of MEMS
micro-beams made of poly-silicon materials, and we show that the stochastic multiscale approach predicts results in agreement
with a Monte Carlo analysis applied directly on the fine finite-element model, i.e. with an explicit discretization of the grains.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Uncertainty is an inherent nature of materials, especially when they are heterogeneous. The heterogeneity of a
material has a significant impact on its properties and might influence the response of structures made of that material

* Corresponding author. Tel.: +32 4 366 48 26; fax: +32 4 366 95 05.
E-mail address: 1..Noels@ulg.ac.be (L. Noels).

http://dx.doi.org/10.1016/j.cma.2015.05.019
0045-7825/© 2015 Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.05.019&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.05.019
http://www.elsevier.com/locate/cma
mailto:L.Noels@ulg.ac.be
http://dx.doi.org/10.1016/j.cma.2015.05.019

142 V. Lucas et al. / Comput. Methods Appl. Mech. Engrg. 294 (2015) 141-167

lmacro

Strain tensors

Stress tensors

I li"micro

<>

EITIESO

Fig. 1. The different scales involved in a multiscale analysis.

as well. The uncertainty due to the heterogeneous nature of the material can be described as the spatial variability of the
material properties in the structure. When considering a finite element analysis, the structural response variability can
be predicted using the direct Monte Carlo method, which can lead to an overwhelming computation cost as it involves
the finite-element discretization of the heterogeneities. In order to solve the problem of structural stochasticity at a
reasonable computation cost, Stochastic Finite Element (SFE) analyses were developed [1-3].

In the context of stochastic finite element analyses, a random field, which is used to describe the heterogeneity
of a material, is discretized in accordance with the finite element mesh. The proper mesh size depends primarily
on the standard deviation and correlation length of the random field, which constrains the variation of the random
variable within each element to be small enough [4]. Therefore finite element sizes smaller than the correlation
length, such as one half of the correlation length [5], are required to ensure the accuracy of the analysis results. In all
generalities, the correlation length of the random material property depends on the characteristic length of the material
heterogeneity. As the interest of this work focuses on polycrystalline materials, the correlation length is related to
the size of the grains, meaning that each grain needs to be meshed in a conformed way. With such a method, the
analysis of the structural stochasticity is very expensive in terms of computational resources. Moreover using a finite
element discretization based on the explicit micro-grain structure leads to a noise field [6] instead of a smooth one [7].
Therefore the stochastic finite element method, such as the Neumann expansion [8] or perturbation approximation [9],
cannot be applied. To achieve a reduction of the computational cost of a structural stochasticity analysis, we seek the
recourse to multi-scale computational methods in which a smooth random field is defined at the meso-scale.

Multi-scale methods were developed with the rise of structural applications made of heterogeneous materials
such as composite materials, metal alloys, and polycrystalline materials. In a multi-scale method, the macro-scale
or structural-scale behavior can be related to the micro-scale properties, through a homogenization technique. The
different scales involved in such an analysis, which are depicted in Fig. 1, are

e The micro-scale: is the characteristic size of the micro-structure, such as the size of inclusions for composite
materials or the size of grains for polycrystalline materials, and is denoted by /micro;

o The meso-scale: is an intermediate scale, such as the size of the volume element over which the homogenization
is performed, and is denoted by lieso;

e The macro-scale: also called structural scale, is the size of the structural problem, and is denoted by Imacro-

Homogenization methods relate the macroscopic strain tensor to the macroscopic stress tensor through the resolution
of a meso-scale boundary value problem (BVP). In this framework, the structural-scale BVP is seen as a continuum
homogeneous medium and the meso-scale BVP contains the different sources of heterogeneities. To this end, the
meso-scale BVP is defined on a Representative Volume Element (RVE), which represents the micro-structure and the
micro-structural behavior in a statistically representative way.
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