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Highlights

• A framework for concurrent atomistic/continuum simulation of graphene is developed.
• The TBDM is re-formulated based on the Nosé–Hoover thermostat.
• The AIREBO potential is used, which is carefully weighted in the bridging zone.
• The Q1STs solid-shell element is modified to include the energy scaling function.
• A thermodynamically rigorous high-order continuum constitutive model is parameterized.

Abstract

Recently developed three-layer-mesh bridging domain method (TBDM) enhanced the conventional bridging domain method
(BDM) by (1) mitigating the temperature cooling effect on the atoms in the bridging domain, and (2) employing a mesh-independent
physics-based discrimination between thermal and mechanical atomic motions. In this paper, we present the new enhancements
for the TBDM to achieve an appropriate framework for concurrently coupled atomistic–continuum simulation of graphene. To
capture the mechanical behavior of graphene accurately, we employed the adaptive intermolecular reactive bond order (AIREBO)
potential in the atomistic model, which is carefully weighted by the atomic energy scaling function in the bridging zone. In the
continuum model, a thermodynamically rigorous high-order continuum description, considering the symmetries of graphene, is
used which is parameterized using full molecular dynamics (MD) simulations. To accurately capture the bending behavior of
graphene, a recently developed explicit finite-deformation solid-shell element is used to discretize the continuum domain, and
its formulation is modified to include the continuum energy scaling function. To achieve realistic constant-temperature condition
(canonical ensemble), the Nosé–Hoover thermostat is used in the full MD domain and also as local thermostats in the bridging
domain. 5-value Gear predictor–corrector time integrator is implemented, which is well-suited to be used with the Nosé–Hoover
thermostat. Accordingly, the TBDM formulation is modified to work with this time integrator. Some modifications are also made
in the TBDM formulation to increase the robustness of the multiscale simulations. Finally, the effectiveness of the proposed
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multiscale method for graphene is demonstrated by running in-plane shear, out-of-plane bending, and nanoindentation simulations
and comparing the results with those obtained from full MD and full finite-element simulations.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Two-dimensional graphene, the one-atom-thick honeycomb lattice of carbon, is the conceptual building block for
a number of carbon allotropes, e.g. graphite (three-dimensional), carbon nanotubes (one-dimensional), and bucky-
balls or spherical fullerenes (zero-dimensional) [1,2]. Until recently, graphene existed only within three-dimensional
graphite or tightly bound to another solid surface [1]. In a seminal paper in 2004 [3], it was reported that graphene
could be obtained by mechanical exfoliation, a process including directly rubbing bulk graphite onto a smooth sub-
strate [3–5]. It has been shown that graphene has many supreme properties such as extreme mechanical strength,
exceptionally high electronic and thermal conductivities, and impermeability to gases, which make it highly attractive
for numerous applications in electronics, photonics, composite materials, coating, energy generation and storage, sen-
sors, drug delivery, etc. [6]. In graphene, carbon atoms are densely packed in a regular sp2-bonded atomic hexagonal
pattern. Its robust network of sp2 bonds makes graphene the strongest material ever studied [7,8]. On the other hand,
graphene is also incredibly supple, which in combination with its electrical properties can be exploited for strain-based
graphene electronics [9,10]. Graphene thermal properties are also extraordinary: extremely high thermal conductiv-
ity [11], ∼20 times higher than that of copper, and large and negative thermal expansion coefficient [12], 5–10 times
larger than that in ordinary graphite.

Graphene production is now scaled up to centimeter [13,14] or even meter scale [15] and polycrystallinity is
unavoidable [16] in large-scale graphene films. It is well-known that the properties of polycrystalline materials are
often dominated by the size of their grains and properties of grain boundaries. For graphene, a 2D lattice, these
effects have more practical significance because even a line defect can divide and disrupt the whole crystal. Although,
atomistic numerical simulations have played an important role in fast advancing graphene research by predicting
and elucidating various properties of graphene, e.g., [17–27], modeling “full-scale” grains and their interactions
are not feasible using all-atom simulations. Our goal is to provide essential multiscale tools to investigate the
mechanical behavior of full-size graphene grains, which has significant implications in the application of large-area
polycrystalline graphene, such as for biological membranes and electronic devices. In this paper, we report on the
new enhancements for the recently developed three-layer-mesh bridging domain method (TBDM) [28] to achieve
an appropriate framework for concurrently coupled atomistic–continuum simulation of graphene. Application of the
TBDM in simulation of polycrystalline graphene will be presented in due course.

Generally, multiscale methods aim to seamlessly couple multiple models at different scales. Despite sequential
multiscale methods, which have enjoyed long-time success, e.g., [29], concurrent multiscale methods have encoun-
tered more challenges associated with energy transmission and changes in the constitutive description of a material
across the interface between different models, such as spurious wave reflection. A number of concurrent multiscale
methods have been developed so far, including the quasicontinuum method (QM) [30,31], the coarse-grained MD
method (CGMD) [32], the macroscopic-atomistic-ab initio dynamics (MAAD) method [33,34], the bridging scale
method (BSM) [35], and the bridging domain method (BDM) [36,37]. The BDM is one of the most efficient and
widely-used multiscale methods, which couples the molecular dynamics (MD) simulations with finite element (FE)
methods. In the BDM, the system is partitioned into three sub-domains: atomistic, continuum, and bridging domains.
Lagrange multipliers technique is employed to impose the displacement/velocity compatibility between atomistic and
continuum scales in the bridging domain (BD). In the BDM, the Lagrange-multipliers constraint matrix is usually
diagonalized using the row-sum technique, which is shown to be essential in eliminating spurious wave reflections at
the interface of the atomistic and continuum domains [38]. Accordingly, total Hamiltonian in the BD is divided into
three parts: the atomistic Hamiltonian, the continuum Hamiltonian, and the Hamiltonian associated with the Lagrange
multipliers. The Hamiltonian of continuum and atomistic domains are weighted by scaling factors to avoid double
counting of the Hamiltonian in the BD so the atomistic (continuum) energy is dominant near the purely atomistic
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