
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 293 (2015) 522–541
www.elsevier.com/locate/cma

Non-intrusive reduced order modelling of the Navier–Stokes
equations

D. Xiaoa,d, F. Fanga,∗, A.G. Buchana, C.C. Paina, I.M. Navonb, A. Muggeridgec

a 1 Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, Prince Consort Road,
London, SW7 2BP, UK

b Department of Scientific Computing, Florida State University, Tallahassee, FL, 32306-4120, USA
c Department of Earth Science and Engineering, Imperial College, London SW7 2BP, UK

d China University of Geosciences, Wuhan, 430074, China

Received 12 December 2014; received in revised form 3 April 2015; accepted 19 May 2015
Available online 28 May 2015

Highlights

• This is the first work to apply two non-intrusive ROMs for solving the N–S equations.
• A second order Taylors series method for calculating the POD coefficients.
• A Smolyak sparse grid collocation method for calculating the POD coefficients.
• Implementation of the non-intrusive ROMs does not require modifications to a system code.
• Ability of non-intrusive ROMs to capture the highly nonlinear fluid dynamics.

Abstract

This article presents two new non-intrusive reduced order models based upon proper orthogonal decomposition (POD) for
solving the Navier–Stokes equations. The novelty of these methods resides in how the reduced order models are formed, that is,
how the coefficients of the POD expansions are calculated. Rather than taking a standard approach of projecting the underlying
equations onto the reduced space through a Galerkin projection, here two different techniques are employed. The first method
applies a second order Taylor series to calculate the POD coefficients at each time step from the POD coefficients at earlier time
steps. The second method uses a Smolyak sparse grid collocation method to calculate the POD coefficients, where again the
coefficients at earlier time steps are used as the inputs. The advantage of both approaches are that they are non-intrusive and so
do not require modifications to a system code; they are therefore very easy to implement. They also provide accurate solutions
for modelling flow problems, and this has been demonstrated by the simulation of flows past a cylinder and within a gyre. It is
demonstrated that accuracy relative to the high fidelity model is maintained whilst CPU times are reduced by several orders of
magnitude in comparison to high fidelity models.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Reduced order models (ROMs) have become prevalent in many fields of physics as they offer the potential to
simulate dynamical systems with substantially increased computation efficiency in comparison to standard techniques.
Among the model reduction techniques, the proper orthogonal decomposition (POD) method has proven to be an
efficient means of deriving a reduced basis for high-dimensional nonlinear flow systems. The POD method has been
successfully applied to numerous research fields and has a number of variants, such as the principal component
analysis (PCA) method [1] in statistics; Karhunen–Loeve method [2] in signal analysis and pattern recognition; and
empirical orthogonal functions (EOF) [3,4] in geophysical fluid dynamics and meteorology. The POD method has
also been applied to ocean models in Cao et al. [5], Vermeulen and Heemink [6] and also to shallow water equation
models. Its application includes the work of Daescu and Navon [7], Stefanescu et al. [8,9], Chen et al. [10,11], Altaf
et al. [12], Du et al. [13], Fang et al. [14], as well as Xiao et al. [15,16].

However in most cases the source code describing the physical model has to be modified in order to generate
the reduced order model. These modifications can be complex, especially in legacy codes, or may not be possi-
ble if the source code is not available (e.g. in some commercial software) [17]. To circumvent these shortcom-
ings, more recently, non-intrusive methods have been introduced into ROMs, which do not require the knowledge
of the governing equations and the original code [17]. Noack [18] and Noori [19] introduced the Neural Net-
work into ROMs. Chen [17] proposed a Black Box Stencil interpolation non-intrusive method, which is based on
parametric regression methods, and applied it to a one dimensional chemical reaction problem and two dimen-
sional porous media flow problems. Audouze et al. [20] proposed a non-intrusive Radial Basis Function (RBF)
reduced-order modelling method for approximating the solutions of nonlinear time-dependent parameterized par-
tial differential equations (Burgers’ equation and a parameterized convection–reaction–diffusion problem). Iuliano
and Quagliarella [21] developed a non-intrusive POD ROM for aerodynamic shape optimization. Guénot et al. [22],
Casenave et al. [23] and Klie [24] proposed a non-intrusive POD ROM based on RBF and the EIM/DEIM algo-
rithm. However, most of current non-intrusive ROMs may still suffer from prohibitive computational costs due to the
exponential increase of the number of multidimensional functions with the dimensional size of problems (in ROM,
the dimensional size d = P × Nv , where P is the number of POD bases and Nv is the number of variables to be
solved).

To cope with the curse of dimensionality, as we know, the Smolyak sparse grid method [25] is an efficient method
of integrating/interpolating multidimensional functions based on a univariate quadrature rule. This sparse grid method
has been widely applied in various applications [26–28], including numerical integration [29], partial differential
equations [30], economics [31,32], stochastic natural convection problems [33], sensitivity analysis [34], portfolio
problems [35] and high dimensional interpolation [36].

To our best knowledge, little attempt has been made to use the sparse grid method in ROMs with exception of
Peherstorfer [37], Cheng [38], Ullmann [39] and Lang, and Sumant [40]. Peherstorfer [37] presented a reduced-
order model of parameterized systems by employing a sparse grid machine learning method and applied this new
ROM to thermal conduction and chemical reaction simulations. Sumant [40] used a Smolyak algorithm to compute
orthogonal polynomial expansions coefficients in the reduction of random input variables for an electromagnetic
problems. Cheng [38] presented a method for numerical simulation of the stochastic Berger equation, and investigated
the sparsity property in terms of Karhunen–Loeve expansions. Ullmann [39] and Lang assessed the applicability of
POD/Galerkin to stochastic collocation on the sparse grid.

This paper presents the first work to apply non-intrusive ROMs to the Navier–Stokes equations. These ROMs are
implemented here within a high fidelity unstructured mesh fluid model. The ability of non-intrusive ROMs to capture
the highly nonlinear fluid dynamics is investigated here. The first non-intrusive ROM uses a sparse grid collocation
approach (based on Smolyak grids) and another is derived using Taylor series expansion. The reduced order mod-
els are constructed using a finite element Bubnov–Galerkin discretization of the Fluidity fluid dynamics modelling
software [41] taking snapshots of the solution variables at regular time intervals. In the Smolyak sparse grid ROM
approach, solutions of the full model are recorded (as a sequence of snapshots), and from this data appropriate basis
functions are formed that optimally represent the problem. The Smolyak sparse grid method is used to construct in-
terpolation functions that approximate the non-linearity of the model. In the Taylor/POD approach, the model based
on snapshots is expanded through a Taylor expansion to second order so as to capture the quadratic non-linearities in
the high fidelity system.
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