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Abstract

Fractional diffusion equations have found increasingly more applications in recent years but introduce new mathematical and
numerical difficulties. Galerkin formulation, which was proved to be coercive and well-posed for fractional diffusion equations
with a constant diffusivity coefficient, may lose its coercivity for variable-coefficient problems. The corresponding finite element
method fails to converge.

We utilize the discontinuous Petrov–Galerkin (DPG) framework to develop a Petrov–Galerkin finite element method for
variable-coefficient fractional diffusion equations. We prove the well-posedness and optimal-order convergence of the Petrov–
Galerkin finite element method. Numerical examples are presented to verify the theoretical results.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In the last few decades fractional differential equations (FDEs) have found increasingly more applications in fluid
mechanics [1], anomalous diffusion and acceleration of steep fronts in reaction–diffusion processes [2,3], turbulence
in geophysical flows or plasma physics [4–6], continuum mechanics [7], as they provide very effective alternatives
for modeling complex systems characterized by nonlocal phenomena and long range interactions. However, FDEs
present mathematical difficulties that have not been encountered in the context of second-order differential equations.
In their pioneer work [8], Ervin and Roop proved coercivity of a Galerkin formulation and the well-posedness of
the homogeneous Dirichlet boundary-value problem of a constant–coefficient conservative FDE. We showed that for
variable-coefficient FDEs the Galerkin formulation loses its coercivity [9] and that the Galerkin finite element methods
might fail to converge [10].
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To overcome these difficulties we proposed a Petrov–Galerkin formulation for the homogeneous Dirichlet
boundary-value problem of FDEs, and proved its weak coercivity and well-posedness [9]. However, there is a sharp
difference between a Galerkin formulation and a Petrov–Galerkin formulation: Coercivity of a Galerkin formulation
on an infinite-dimensional admissible space ensures that of the formulation on any finite-dimensional subspace.
Consequently, the unique solvability and stability of Galerkin finite element methods are guaranteed automatically.
In contrast, weak coercivity of a Petrov–Galerkin formulation on a pair of infinite-dimensional product spaces cannot
ensure that of the formulation on any pair of finite-dimensional subspaces. Therefore, one still has to analyze how
to choose appropriate finite-dimensional trial space and test space to ensure the weak coercivity and so the unique
solvability and stability of the corresponding Petrov–Galerkin finite element method.

In this paper we utilize the DPG (discontinuous Petrov–Galerkin) framework of Demkowicz and Gopalakrishnan
[11–14] to develop a Petrov–Galerkin finite element method for a class of variable-coefficient conservative FDEs in
one space dimension. We prove its error estimate in the energy norm and the L2 norm. Numerical experiments are
presented to verify the convergence rates of the method. The rest of the paper is organized as follows: In Section 2
we present the model problem and cite known results to be used subsequently. In Section 3 we apply the DPG
framework to the model problem. In Section 4 we develop a Petrov–Galerkin finite element method with optimal test
functions for fractional diffusion equations with a constant diffusivity coefficient. We then prove the corresponding
error estimates. In Section 5 we develop a Petrov–Galerkin finite element method with approximately optimal test
functions for fractional diffusion equations with a variable diffusivity coefficient and prove the corresponding error
estimates in the energy norm and the L2 norm. In Section 6 we conduct numerical experiments to investigate the
performance of the Petrov–Galerkin method and to verify its convergence rate numerically. In Section 7 we draw
concluding remarks and outline future work.

2. Problem formulation

Let C∞

0 (0, 1) be the space of infinitely many times differentiable functions on (0, 1) that are compactly supported
within (0, 1). Let L p(0, 1), with 1 ≤ p ≤ +∞, be the standard normed spaces of pth power Lebesgue integrable
functions on (0, 1). Let W m,p(0, 1) be the Sobolev space of functions on (0, 1) whose weak derivatives up to order
m are in L p(0, 1). Let Hµ(0, 1), with µ > 1/2, be the fractional Sobolev space of order µ and Hµ

0 (0, 1) be the
completion of C∞

0 (0, 1) with respect to the Sobolev norm ∥ · ∥Hµ(0,1). Let H−µ(0, 1) be the dual space of Hµ
0 (0, 1).

We consider the variable-coefficient conservative FDE in one space dimension
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= f (x), x ∈ (0, 1), u(0) = u(1) = 0. (1)

Here Du(x) := u′(x) is the first-order differential operator, 2 − β with 0 < β < 1 represents the order of anomalous
diffusion of the problem, K is the diffusivity coefficient with

0 < Kmin ≤ K (x) ≤ Kmax < ∞, (2)

0 ≤ θ ≤ 1 indicates the relative weight of forward versus backward transition probability, and f is the right-hand
side. The left and right fractional integrals of order β are defined for any function u ∈ L p(0, 1) by [15,16]
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where Γ (·) is the Gamma function. The left and right Caputo and Riemann–Liouville fractional derivatives of order
β are defined by

C
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x Du(x), C
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1 Du(x),
R
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1 u(x).

The mathematical model (1) arises in many physical and engineering applications. In groundwater hydrology, (1)
represents the pressure equation for the flow, in which u is the water head, K (x) is the intrinsic permeability of the
porous medium, and f is the source and sink term [17]. Eq. (1) is obtained by incorporating a fractional Darcy’s law,
which accounts for the non-local interaction in the flow, into a mass balance law for the flow [18]. In the context of
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