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Abstract

Many real-life applications of the Discrete Element Method (DEM) require a particle description which accounts for irregular
and arbitrary shapes. In this work, a novel method is presented for calculating contact force interactions between polyhedral
particles. A contact between two polyhedra is decomposed as a set of contacts between individual polygonal facets. For each
polygon–polygon contact, an individual contact force is obtained by integrating a linear pressure over the area of its intersection.
Both convex as well as partially concave polyhedra can be accurately represented. The proposed algorithm is validated by
comparing to previously published experimental and computational gravitational particle depositions of identical cubes. Finally,
the model is demonstrated in simulations of gravitational packing of various other polyhedral shapes.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In granular assemblies, particle shape has been shown to be a determining parameter affecting, among else, a
system’s response upon loading [1,2], packing density, stress patterns [3] and ratcheting behavior [4]. In the Discrete
Element Method (DEM), which tries to describe granular systems as assemblies of distinct, explicitly modeled
bodies interacting by means of contact forces [5], particle shape is often approximated using a simplified geometrical
representation, e.g. spheres. Many applications, however, require a more elaborate description of irregular bodies.

During the last years, many advances are made in shape description for the Discrete Element Method. Instead of
spheres, ellipsoids [6–8], superquadrics [9,10], and polyhedra [5,11] have been used to approximate particle shape.
Other approaches use composites of more simple shape primitives, such as spheres [12–14], ellipsoids [15] and
spheropolygons [16]. A variation of DEM, the Granular Element Method (GEM), uses Non-Uniform Rational Basis-
Splines (NURBS) to capture grain shape, offering a flexible and robust algorithm to account for arbitrary rounded
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shapes [17,18]. Another method for modeling arbitrary rounded shapes is based on triangulated surface meshes in
which the local curvature is used for a Hertzian contact force formulation [19].

In this work, we propose a flexible and easy-to-implement algorithm to model irregular polyhedral particles. The
presented method represents particles using a surface mesh containing polygonal facets, and formulates contact forces
based on individual interactions between two contacting bodies. For each polygon–polygon contact, a linear elastic
and dissipative pressure is used which is numerically integrated over the intersection of the two polygons. Because
each contact between two polygons is resolved independently, the method benefits from efficient contact detection and
can be easily parallelized. In Section 2, it is explained how contact forces can be computed between two arbitrarily
shaped polyhedra. Next, in Section 3, the model is validated by comparing to simulations of gravitational deposition
of cubes and further demonstrated by showing analogous deposition of various other polyhedral particles.

2. Model description

2.1. Contact detection

Contact detection, i.e. the generation of a list of contact candidates, is performed on the level of individual polyg-
onal facets, instead of between two complete polyhedral bodies. Bounding boxes [20] are constructed for each in-
dividual polygon. Using these bounding boxes several efficient contact detection methods can be applied, such as
(multi-)grid [21–24] and octree [25,26] methods.

For each set of two polygons, these algorithms can cheaply determine whether or not their bounding boxes are
overlapping, and are therefore likely to have physical contact. With these contact detection methods, the computational
effort does not scale with the number of polygons being used in the simulation, but only with the number of polygons
that are actually in contact (see Section 3.4 and [19]).

2.2. Geometrical contact properties

Contact pressures are calculated on the contact plane between two polygons P1 and P2 with normal vectors n̂1 and
n̂2. For this, an intersection polygon S12 is first determined. In the case of equal material properties, the plane in which
S12 lies is chosen as the bisection of the planes of P1 and P2. The contact normal unit vector is therefore approximated
as:

n̂12 =
n̂2 − n̂1n̂2 − n̂1

 . (1)

If the two contacting bodies have a different stiffness, the contributions of n̂1 and n̂2 to n̂12 should in principle be
inversely weighted with their stiffness.

All three planes characterized by n̂1, n̂2 and n̂12 contain the plane–plane intersection line defined by the vector
l̂12 = n̂1 × n̂2 and a point s chosen on the intersection line.

Next, P1 and P2 are projected on the contact plane along the direction of respectively n̂2 and n̂1, yielding the
projections P ′

1 and P ′

2 (see Fig. 1(a) and (c)). S12 is then obtained by computing the side of the intersection between
P ′

1 and P ′

2 which is in the direction of positive overlap (Fig. 1(b)).
At a given test point x inside S12, the overlap distance δ12 can be calculated as:

δ12(x) = 2 tan(α)

(x − s) · (n̂12 × l̂12)


(2)

with cos(α) = n̂12 · n̂1. The contact point c is approximated as the mean of the corners of S12, weighted by their
corresponding overlap distance according to Eq. (2).

In every x ∈ S12, a relative contact velocity is defined as:

v12(x) = vdof
2 − vdof

1 + wdof
2 × (x − xdof

2 ) − wdof
1 × (x − xdof

1 ), (3)

where xdof
i , vdof

i and wdof
i are respectively the center of mass position, velocity and angular velocity of the polyhedron

to which polygon Pi belongs.
To deal with issues of numerical accuracy – e.g. exact flat contacts – or efficiency – e.g. early contact reject cases,

additional calculations are performed. These are briefly summarized in Appendix A.
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