Accepted Manuscript

An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods

Christoph Meier, Alexander Popp, Wolfgang A. Wall

PII: S0045-7825(14)00178-9

DOI: http://dx.doi.org/10.1016/j.cma.2014.05.017

Reference: CMA 10251

To appear in: Comput. Methods Appl. Mech. Engrg.

Received date: 20 December 2013 Revised date: 23 May 2014 Accepted date: 26 May 2014

Please cite this article as: C. Meier, A. Popp, W.A. Wall, An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods, *Comput. Methods Appl. Mech. Engrg.* (2014), http://dx.doi.org/10.1016/j.cma.2014.05.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An Objective 3D Large Deformation Finite Element Formulation for Geometrically Exact Curved Kirchhoff Rods

Christoph Meier^a, Alexander Popp^{a,*}, Wolfgang A. Wall^a

^aInstitute for Computational Mechanics, Technische Universität München, Boltzmannstrasse 15, D-85748 Garching b. München, Germany

Abstract

The objective of this work is the development of a new finite element formulation for beams according to the Kirchhoff theory of thin rods, which includes the deformation states of axial tension, torsion and bending. The proposed formulation accounts for large deformations in three-dimensional problem settings consisting of slender, prismatic beams with arbitrarily curved initial geometries and arbitrary cross-section shapes. Like in geometrically exact Reissner theories the derived deformation measures are geometrically exact in the sense that they are consistent with the strong and weak form of the balance equations and the beam geometry for any configuration and for arbitrarily large translations, rotations and strains. A novel orthogonal interpolation strategy is applied to the triad field representing the cross-section orientation in order to fulfill the Kirchhoff constraint of vanishing shear strains in a strong sense and to preserve the objectivity of the spatially discretized problem. The continuity requirements resulting from the corresponding weak form are fulfilled by a cubic Hermite interpolation, thus leading to a C^1 -continuous representation of the beam centerline. Fundamental properties such as objectivity, path-independence, consistency and accuracy of the developed beam element are verified by means of suitable numerical examples.

Keywords: Geometrically exact Kirchhoff beams, Initial curvature, Large rotations, Objectivity, Finite elements, C^1 -continuous Hermite interpolation

Email address: popp@lnm.mw.tum.de (Alexander Popp)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/6917621

Download Persian Version:

https://daneshyari.com/article/6917621

<u>Daneshyari.com</u>