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a b s t r a c t

In this work, we propose viable and efficient strategies for the stabilization of the reduced
basis approximation of an advection dominated problem. In particular, we investigate the
combination of a classic stabilization method (SUPG) with the Offline–Online structure of
the RB method. We explain why the stabilization is needed in both stages and we identify,
analytically and numerically, which are the drawbacks of a stabilization performed only
during the construction of the reduced basis (i.e. only in the Offline stage). We carry out
numerical tests to assess the performances of the ‘‘double’’ stabilization both in steady
and unsteady problems, also related to heat transfer phenomena.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this work is to study and develop a stabilized reduced basis method suitable for the approximation of the solu-
tion of parametrized advection–diffusion PDEs with high Péclet number, that is, roughly, the ratio between the advection
term and the diffusion one.

Advection–diffusion equations are very important in many engineering applications, because they are used to model, for
example, heat transfer phenomena (with conduction and convection) [16] or the diffusion of pollutants in the atmosphere or
in the water [6,26]. In such applications, we often need very fast evaluations of the approximated solution, depending on
some physical and/or geometrical input parameters. This happens, for example, in the case of real-time simulations. More-
over, we need rapid evaluations also if we have to perform repeated approximation of the solution, for different input param-
eters. An important case of this many-query situation is represented by some optimization problems, in which the objective
function to optimize depends on the parameters through the solution of a PDE.

The reduced basis (RB) method [25,29] meets our need for rapidity and it is also able to guarantee the reliability of the
solution, thanks to sharp a posteriori error bounds. A crucial feature of the RB method is its decomposition into two compu-
tational steps. During the first expensive one, called Offline step, some high-fidelity approximated solutions are computed,
which will become the global basis functions of the Galerkin projections performed during the second inexpensive phase,
called Online step. A brief introduction to the RB method will be given in Section 2.
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As the advection–diffusion equations are often used to model heat transfer phenomena, we can find in literature many
results about the RB approximation of heat transfer problems such as the Poiseuille–Graetz problem or the ‘‘thermal fin’’
problem [9,20,25,28,30,31]. However, until now, only the case in which the Péclet number is reasonably low (i.e. � 102)
was considered without stabilization.

When the Péclet number is higher (i.e. � 105), it is very well known [27] that the Finite Element (FE) solution of the
advection–diffusion equation - that the RB method aims to recover - can show significant instability phenomena. In order
to fix this problem, in the RB framework, some solutions have been proposed for the steady case [6,7,24,26]. The basic idea
is to consider as truth solution a stabilized FE one, using some classical stabilization method (e.g. the SUPG method [27]), and
then to perform the RB Offline and Online steps using the stabilized bilinear form instead of the original one. In the cited pa-
pers we can find some applications to environmental sciences and engineering problems concerning, in particular, air pol-
lution. Very recently, also a Petrov–Galerkin based strategy has been proposed to deal with high Péclet number problems [5].

In some of the previous works, the issue of stability was not studied too much inside concerning the Offline–Online affine
decomposition and some proposed options were not very viable for more complex problems [26]. Our aim was not only to
increase the Péclet number in parametrized problems dealing with convection and transport, including parametrized mov-
ing inner fronts and boundary layers. This work has been also motivated by the aim of creating a general stabilized frame-
work to provide some explanations of previous approaches and known results in literature.

In our work we then want to go further in the study of the stabilized RB method, proposing viable and efficient strategies to
be used combined with the Offline–Online computational procedures and providing a deeper analysis on the need of stabil-
ization for parametrized advection–diffusion problems. We start by studying steady problems and then we move to the time
dependent case.

After having done, in Section 2, a short presentation of the RB method, in Section 3 we observe and analyse what happens
when we ‘‘stabilize’’ only the Offline stage of the RB method, thus producing ‘‘stable’’ basis functions to be interpolated in the
Online stage by projecting with respect to the non-stabilized advection–diffusion operator. We will show that, in general, the
latter strategy is not satisfactory because of ‘‘inconsistency’’ problems between the Offline and Online stages, arising from
the use of two different bilinear forms. We will also prove an a priori error estimate (Proposition 3.1) in order to estimate
this inconsistency. After having determined which stabilization strategy gives better results and why, in Section 4 we will
try to apply it to a test problem with a parameter dependent internal layer, using also a piecewise quadratic polynomial truth
approximation space. Finally, in Section 5 we extend the investigation of the RB stabilization method to parabolic problems.

2. A brief review of the reduced basis method

The reduced basis (RB) method is a reduced order modelling (ROM) technique which provides rapid and reliable solutions
for parametrized partial differential equations (PPDEs), in which the parameters can be either physical or geometrical
[25,29].

The need to solve this kind of problems arises in many engineering applications, in which the evaluation of some output
quantities is required. These outputs are often function of the solution of a PDE, which can in turn depend on some input
parameters. The aim of the RB method is to provide a very fast computation of this input–output evaluation.

Roughly speaking, given a value of the parameter, the (Lagrange) RB method consists in a Galerkin projection of the con-
tinuous solution on a particular subspace of a high-fidelity approximation space, e.g. a finite element (FE) space with a large
number of degrees of freedom. This subspace is the one spanned by some pre-computed high-fidelity global solutions (snap-
shots) of the continuous parametrized problem, corresponding to some properly chosen values of the parameter.

For a complete presentation of the reduced basis method we refer to [25,29], now we just recall its main features and we
introduce some notations.

2.1. The continuous problem

Let l belong to the parameter domain D, a subset of RP . Let X be a regular bounded open subset of Rd, (d ¼ 1;2;3) and X a
suitable Hilbert space. Given a parameter value l 2 D, let að�; �;lÞ : X � X ! R be a bilinear form and let Fð�;lÞ : X ! R be a
linear functional. As we will focus on advection–diffusion equations, that are second order elliptic PDE, the space X will be
such that H1

0ðXÞ � X � H1ðXÞ. Formally, our problem can be written as follows:

find uðlÞ 2 Xs:t:
aðuðlÞ; v; lÞ ¼ Fðv ;lÞ 8v 2 X:

ð1Þ

The coercivity and continuity assumption on the form a can now be expressed by, respectively:

9 a0 > 0 s:t: a0 6 aðlÞ ¼ inf
v2X

aðv ;v ;lÞ
kvk2

X

8l 2 D ð2Þ

and

þ1 > cðlÞ ¼ sup
v2X

sup
w2X

jaðv ;w; lÞj
kvkXkwkX

8l 2 D: ð3Þ
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