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This article presents two novel adaptive-sparse polynomial dimensional decomposition
(PDD) methods for solving high-dimensional uncertainty quantification problems in com-
putational science and engineering. The methods entail global sensitivity analysis for
retaining important PDD component functions, and a full- or sparse-grid dimension-reduc-
tion integration or quasi Monte Carlo simulation for estimating the PDD expansion coeffi-
cients. A unified algorithm, endowed with two distinct ranking schemes for grading
component functions, was created for their numerical implementation. The fully adap-
tive-sparse PDD method is comprehensive and rigorous, leading to the second-moment
statistics of a stochastic response that converges to the exact solution when the tolerances
vanish. A partially adaptive-sparse PDD method, obtained through regulated adaptivity
and sparsity, is economical and is, therefore, expected to solve practical problems with
numerous variables. Compared with past developments, the adaptive-sparse PDD methods
do not require their truncation parameter(s) to be assigned a priori or arbitrarily. The
numerical results reveal that an adaptive-sparse PDD method achieves a desired level of
accuracy with considerably fewer coefficients compared with existing PDD approxima-
tions. For a required accuracy in calculating the probabilistic response characteristics,
the new bivariate adaptive-sparse PDD method is more efficient than the existing bivari-
ately truncated PDD method by almost an order of magnitude. Finally, stochastic dynamic
analysis of a disk brake system was performed, demonstrating the ability of the new
methods to tackle practical engineering problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty quantification, an emerging multidisciplinary field blending physical and mathematical sciences, character-
izes the discrepancy between model-based simulations and physical reality in terms of the statistical moments, probability
law, and other relevant properties of a complex system response. For practical applications, encountering a large number of
input random variables is not uncommon, where an output function of interest, defined algorithmically via expensive finite-
element analysis (FEA) or similar numerical calculations, is all too often expensive to evaluate. The most promising stochas-
tic methods available today are perhaps the collocation [6,10] and polynomial chaos expansion (PCE) [14,39] methods,
including sparse-grid techniques [ 18], which have found many successful applications. However, for truly high-dimensional

* Grant sponsor: U.S. National Science Foundation; Grant Nos. CMMI-0653279 and CMMI-1130147.
* Corresponding author. Tel.: +1 3193355679.
E-mail addresses: vaibhav-yadav@uiowa.edu (V. Yadav), rahman@engineering.uiowa.edu (S. Rahman).

http://dx.doi.org/10.1016/j.cma.2014.01.027
0045-7825/© 2014 Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2014.01.027&domain=pdf
http://dx.doi.org/10.1016/j.cma.2014.01.027
mailto:vaibhav-yadav@uiowa.edu
mailto:rahman@engineering.uiowa.edu
http://dx.doi.org/10.1016/j.cma.2014.01.027
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

V. Yadav, S. Rahman/Comput. Methods Appl. Mech. Engrg. 274 (2014) 56-83 57

systems, they require astronomically large numbers of terms or coefficients, succumbing to the curse of dimensionality [1].
Therefore, alternative computational methods capable of exploiting low effective dimensions of multivariate functions, such
as the polynomial dimensional decomposition (PDD) method, are most desirable. Readers, not familiar with but interested in
PDD, are referred to the authors’ past works [25-27,32].

For practical applications, the PDD must be truncated with respect to S and m, where S and m define the largest degree of
interactions among input variables and largest order of orthogonal polynomials, respectively, retained in a concomitant
approximation. These truncation parameters depend on the dimensional structure and nonlinearity of a stochastic response.
The higher the values of S and m, the higher the accuracy, but also the computational cost that is endowed with an Sth- or
mth-order polynomial computational complexity. However, the dimensional hierarchy or nonlinearity, in general, is not
known a priori. Therefore, indiscriminately assigning the truncation parameters is not desirable, nor is it possible to do so
when a stochastic solution is obtained via complex numerical algorithms. In which case, one must perform these truncations
automatically by progressively drawing in higher-variate or higher-order contributions as appropriate. Furthermore, all S-
variate component functions of PDD may not contribute equally or even appreciably to be considered in the resulting
approximation. Hence, a sparse approximation, expelling component functions with negligible contributions, should be con-
sidered as well.

Addressing some of the aforementioned concerns have led to adaptive versions of the cut-high-dimensional model rep-
resentation (cut-HDMR) [20] and the anchored decomposition [43], employed in conjunction with the sparse-grid colloca-
tion methods, for solving stochastic problems in fluid dynamics. Several adaptive variants of the PCE [2,19,37] method have
also appeared. It is important to clarify that the cut-HDMR and anchored decompositions are the same as the referential
dimensional decomposition (RDD) [28,30]. Therefore, both adaptive methods essentially employ RDD for multivariate func-
tion approximations, where the mean values of random input are treated as the reference or anchor point - a premise orig-
inally proposed by Xu and Rahman [41]. The developments of these adaptive methods were motivated by the fact that an
RDD approximation requires only function evaluations, as opposed to high-dimensional integrals required for an ANOVA
Dimensional Decomposition (ADD) approximation. However, a recent error analysis [30] reveals sub-optimality of RDD
approximations, meaning that an RDD approximation, regardless of how the reference point is chosen, cannot be better than
an ADD approximation for identical degrees of interaction. The analysis also finds ADD approximations to be exceedingly
more precise than RDD approximations at higher-variate truncations. In addition, the criteria implemented in existing adap-
tive methods are predicated on retaining higher-variate component functions by examining the second-moment properties
of only univariate component functions, where the largest degree of interaction and polynomial order in the approximation
are still left to the user’s discretion, instead of being determined automatically based on the problem being solved. Therefore,
more intelligently derived adaptive-sparse approximations and decompositions rooted in ADD or PDD should be explored by
developing relevant criteria and acceptable error thresholds. These enhancements, some of which are indispensable, should
be pursued without sustaining significant additional cost.

This paper presents two new adaptive-sparse versions of the PDD method - the fully adaptive-sparse PDD method and a
partially adaptive-sparse PDD method - for solving high-dimensional stochastic problems commonly encountered in com-
putational science and engineering. The methods are based on (1) variance-based global sensitivity analysis for defining the
pruning criteria to retain important PDD component functions; (2) a full- or sparse-grid dimension-reduction integration or
quasi Monte Carlo simulation (MCS) for estimating the PDD expansion coefficients. Section 2 briefly describes existing
dimensional decompositions, including PDD and its S-variate, mth-order approximation, to be contrasted with the proposed
methods. Two adaptive-sparse PDD methods are formally presented in Section 3, along with a computational algorithm and
a flowchart for numerical implementation of the methods. Two different approaches for calculating the PDD coefficients, one
emanating from dimension-reduction integration and the other employing quasi MCS, are explained in Section 4. Section 5
presents three numerical examples for probing the accuracy, efficiency, and convergence properties of the proposed meth-
ods, including a comparison with the existing PDD methods. Section 6 reports a large-scale stochastic dynamics problem
solved using a proposed adaptive-sparse method. Finally, conclusions are drawn in Section 7.

2. Dimensional decompositions

Let N,Np, R, and R} represent the sets of positive integer (natural), non-negative integer, real, and non-negative
real numbers, respectively. For k € N, denote by R¥ the k-dimensional Euclidean space, by Nk the k-dimensional mul-
ti-index space, and by R¥* the set of k x k real-valued matrices. These standard notations will be used throughout
the paper.

Let (Q, F, P) be a complete probability space, where Q is a sample space, F is a o-field on Q, and P : F — [0, 1] is a prob-
ability measure. With B representing the Borel o-field on RN NeN, consider an RV-valued random vector
X:=(X1,...,Xn) : (Q,F) — (R, B"), which describes the statistical uncertainties in all system and input parameters of a
high-dimensional stochastic problem. The probability law of X is completely defined by its joint probability density function
fx : RV — RJ. Assuming independent coordinates of X, its joint probability density fx (x) = Hﬁj’f,« (x;) is expressed by a product
of marginal probability density functions f; of X;,i =1,...,N, defined on the probability triple (Q;, 7;, P;) with a bounded or
an unbounded support on R. For a given uC {1,...,N}, fx ,(X_y) == Hﬁ]\i@fi(xi) defines the marginal density function of
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