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a b s t r a c t

Reduced order models (ROMs) in fluid dynamics are nowadays mostly developed by per-
forming a projection of the Navier–Stokes equations onto a low-dimensional space basis.
This basis is usually obtained through Proper Orthogonal Decomposition (POD), which
remains one the most efficient techniques to compress precomputed data. The main draw-
back of a posteriori POD based ROMs is however their lacks of reliability as their parameters
are varied, preventing their direct uses within optimization algorithms. The goal of the
present article is to obtain an a priori low-dimensional space–time separated representa-
tion of the fluid fields, without precomputed data. The approach is based on the use of
space–time Proper Generalized Decomposition (PGD) definitions, which are successfully
applied in several fields but whose uses in fluid dynamics remain scarce. Their applications
to the Navier–Stokes equations are indeed not straightforward, due to the pressure–veloc-
ity coupling, the divergence-free constraint and the non-linear convective term. The ROMs
are built here from a space–time weak formulation of the Chorin–Temam prediction-cor-
rection scheme. More particularly, a priori space–time separated representations are
obtained by applying the Galerkin based progressive PGD definition. The minimax PGD def-
inition is moreover experimented on a linear Stokes simplified case. The related algorithms
are explicitly given and illustrated on a transient lid-driven cavity flow. It is shown that the
a priori space–time separated representations converge to the full model solution as the
decomposition order increases. The ability of the resulting ROM to learn iteratively from
its own error is highlighted: the progressive PGD algorithm can be used to effectively
enrich incomplete POD and PGD precomputed space bases, such as those obtained with dif-
ferent parameter values. This may allow to ensure the accuracy of a ROM as the parameter
is varied, which is of crucial interest for optimization problems.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Reduced order models (ROMs) are nowadays able to represent complex systems with few degrees of freedom and at the
cost of a moderate loss of accuracy. Numerous techniques can be found in the literature to build a ROM. Most of them involve
the knowledge of a low-dimensional basis as starting point, such as Proper Orthogonal Decomposition (POD) [1,2], balanced
POD [3,4], modal basis [5,6], balanced truncation [7,8], Krylov subspaces [9] and Centroidal Voronoi Tesselation [10], just to
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name a few. For incompressible fluid flows, the most popular method is probably the POD: due to both its optimal energetic
convergence property and its applicability to non-linear problems, it is proven to be an efficient technique to obtain an a
posteriori very low-dimensional space basis. A posteriori means here that the approach requires a precomputed quantity
of data, more precisely snapshots of the velocity field, and optionally the pressure one, at different time steps, to compute
the low-dimensional subspace. POD based ROMs are then classically obtained by performing a Galerkin projection, or a
Petrov–Galerkin one, of the Navier–Stokes equations onto the POD space eigenfunctions [11–20]. The resulting ROMs
may finally be used within optimization algorithms, with interesting prospects for the control of fluid flows [21–25].

One of the well-known drawbacks of POD based ROMs is their lacks of accuracy and reliability as their internal param-
eters are varied, which is the case in optimization or parametric studies. Without special care, they are indeed limited to
rapidly reproduce the full model numerical solution, which has already been computed to obtain the reduced basis at a
reference value of the parameter. At best, they are useful for long-time predictions and to obtain an estimate of the fluid flow
in a very close vicinity of the parameter reference value. Roughly speaking, if the information is not contained in the precom-
puted data, then the POD based ROM is not able to simulate it accurately. Both theoretical and computational efforts have
been performed to enhance its accuracy as parameters are varied, for instance and not exhaustively:

� A line of research focuses on the interpolation of POD bases precomputed at different values of the parameters, to yield a
space basis adapted to a new value of the parameter. More precisely, the subspace angle interpolation [26,27], as well as
an advanced interpolation based on the Grassmann manifold and its tangent space [28], are developed and successfully
tested in the field of aeroelasticity: new orthogonal space functions can be rapidly computed and used to build an adapted
ROM. Since these approaches are essentially geometrical and do not take into account the underlying equations, the
precomputed bases still require to be close enough to the new parameter value to yield an accurate ROM. Moreover, their
applications to incompressible fluid flows may not be straightforward, due to the additional divergence-free constraint on
the velocity field: the interpolated space functions are not themselves guaranteed to be divergence-free.
� A second approach is based on the trust-region POD technique [23,29]: a ROM is used within the optimization loop, and

its range of validity is automatically estimated with regard to the optimization goal by using the trust-region method. It
can therefore be updated only when it is required, which enables to save a lot of CPU time compared to the direct use of
the full model within the loop. Nevertheless, the update step of the ROM is ultimately achieved with the full model com-
putation to build a new POD space basis.

Another technique consists in progressively enriching the ROM by the equation residual and the related Krylov subspaces.
The approach, called A Priori Hyper-Reduction [30,31], has been successfully developed on linear and non-linear model prob-
lems, for instance on transfer and Burgers equations [32–34]. The first try on the Navier–Stokes equations [35] shows that
the equations residual is inadequate to built a ROM from scratch, starting only from initial fields, and to advance forward in
time by iterative enrichment. A second try [36] proves that the equations residual can be used to efficiently stabilize a POD
based ROM. It is also shown that the residual is not able to enrich the ROM when a parameter is varied.

In other fields, alternative numerical approaches are now available to build a low-dimensional separated representation
of solutions, without knowledge of precomputed data. More precisely, a priori space–time separated representation has first
been proposed by Ladevèze, under the name of radial approximation, with applications to nonlinear structural mechanics
[37]. This technique of separation of variables, called nowadays Proper Generalized Decomposition (PGD), is receiving a
growing interest and may be seen as a generalization of the POD for the a priori construction of a separated representation
of the solution. It is applied in numerous fields [38,39], from the kinetic theory modeling of complex fluids [40,41] to the
biology [42] and quantum chemistry [43]. It is moreover proved to be efficient for multidimensional problems, for instance
on parametric deterministic heat transfer and conduction equations [44,45], on parametric models in evolving domains [46],
and developed along with the LATIN method [47,48] to explore rationally the space of parameters [49,50]. It is also devel-
oped and successfully used in the stochastic framework [51–53]. In references [54–57], space PGD techniques are applied on
the Navier–Stokes equations. More precisely, each velocity component at time tn is searched under the form
uðx; y; tnÞ �

Pm
i¼1aiXiðxÞYiðyÞ, and new space functions for each direction have to be recomputed at each time step. The ap-

proach is shown to be efficient from the CPU time point of view. It is nevertheless mainly limited to simple geometries,
i.e. to a separated fluid domain X ¼ Xx �Xy, even if it may be generalized to arbitrary X by embedding it into a larger
separated domain [58]. Furthermore, since the space functions are different at each time step, the resulting decomposition
generates no space basis on a whole time interval, preventing the building of a ROM and a potential use within optimization
loops.

While space–time PGD algorithms have been proven to be efficient to obtain a priori space–time separated representa-
tions in several fields, their applications to the Navier–Stokes equations are not straightforward, due to the pressure–velocity
coupling, the divergence-free constraint and the non-linear convective term. The first successful attempt to apply a space–
time PGD definition for low-Reynolds numbers incompressible flows is achieved in the recent article of Aghighi et al. [59]. A
penalty formulation of the incompressibility constraint is used and the pressure is therefore totally removed in the momen-
tum equation. The approach is proven to be efficient from the CPU time point of view compared to the full model. With this
method, the resulted velocity field is not truly divergence-free and the pressure field does not have a physical meaning. We
propose here an alternative way to face the velocity–pressure coupling and the divergence-free constraint, by applying
PGD algorithms on a Chorin–Temam predictor–corrector scheme [60,61]. This enables to obtain, by construction, a
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