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a b s t r a c t

The spectral stochastic finite element method (SSFEM) may offer an efficient alternative to the traditional
Monte Carlo simulations (MCS) for uncertainty quantification of large-scale numerical simulations. In the
framework of the intrusive SSFEM, the main computational challenge involves solving a coupled set of
deterministic linear systems. For large-scale numerical models, the computational efficiency of the intru-
sive SSFEM primarily depends on the solution techniques employed to tackle the resulting coupled linear
systems. In this paper, we report a probabilistic version of the dual-primal domain decomposition
method for the intrusive SSFEM in order to exploit high performance computing platforms for uncer-
tainty quantification. In particular, we formulate a probabilistic version of the dual-primal finite element
tearing and interconnect (FETI-DP) technique to solve the large-scale linear systems in the intrusive
SSFEM. In the probabilistic setting, the operator of the dual interface system in the dual-primal approach
contains a coarse problem. The introduction of the coarse problem in the probabilistic setting leads to a
scalable performance of the dual-primal iterative substructuring method for uncertainty quantification of
large-scale computational models. The convergence properties, numerical and parallel scalabilities of the
probabilistic FETI-DP method and the recently developed probabilistic version of the balancing domain
decomposition by constraints (BDDC) method are contrasted. For numerical illustrations, we consider
flow through porous media and linear elasticity problems with spatially varying system parameters mod-
elled as non-Gaussian random processes. The algorithms are implemented on a Linux cluster using MPI
and PETSc parallel libraries.

� 2013 Published by Elsevier B.V.

1. Introduction

Advances in high performance computing systems and parallel
algorithms enable extreme scale computational simulations using
high resolution numerical models. To establish credibility in these
numerical predictions, it is imperative to quantify uncertainty in
such large-scale simulations. The computational cost of the tradi-
tional Monte Carlo simulations (MCS) becomes intensive for
large-scale models. To this end, the spectral stochastic finite ele-
ment method (SSFEM) received considerable attention as an effi-
cient alternative to MCS (e.g. [3–10]). In the so-called intrusive
SSFEM based on the Galerkin projection, the computational effi-
cacy of this approach is dictated by the solution technique adopted
to tackle a set of coupled deterministic linear systems.1

To reduce the computational cost of the intrusive SSFEM ap-
proach, the reduced orthonormal vector basis technique [11] and

stochastic reduced basis method [12–14] have been proposed in
the literature. In this paper, we focus our attention on the develop-
ment of a scalable domain decomposition solver for the intrusive
SSFEM in order to effectively exploit high performance computing
platforms for uncertainty quantification of large-scale numerical
models.

In the intrusive SSFEM, the polynomial chaos expansion (PCE) is
used to represent the uncertain input and output processes. The
chaos coefficients of the output process are obtained by the
Galerkin projection technique [3–10,15,16]. For high resolution
numerical models, this methodology necessitates the solution of
a large-scale deterministic linear system for the chaos coefficients
of the output process. To effectively exploit the high performance
computing platforms, specialized solution strategies are required
to tackle this system.

The development of efficient solution techniques for the SSFEM
linear system has received a considerable attention in the litera-
ture (e.g. [17–25]). The previous initiatives are focused towards
developing efficient and robust preconditioners for the iterative
solution techniques of the SSFEM linear system (e.g. [26,27]). To
effectively exploit the high performance computing platforms,
the preconditioners for the SSFEM must demonstrate a scalable
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performance to large number of processors. For parallel efficiency,
the convergence rate of the iterative solvers should, for instance,
not only be independent of the problem size and number of subdo-
mains, but also be insensitive to the level of uncertainty and order
of the stochastic dimensions.

To this end, a mathematical framework for non-overlapping do-
main decomposition method of SPDEs is introduced in [28] to
quantify uncertainty in large-scale numerical simulations. In par-
ticular, non-overlapping domain decomposition method or sub-
structuring technique is used to decompose the physical domain
while the PCE based functional expansion is employed along the
stochastic dimension. This approach is extended by the authors
[29–31] to develop iterative substructuring technique for SPDEs.
Specifically, a number of parallel one-level domain decomposition
preconditioners (namely Lumped, Weighted Lumped and Neu-
mann–Neumann preconditioners) are formulated for the iterative
solution of the extended Schur complement system in the frame-
work of SSFEM. The one-level preconditioners demonstrate a rea-
sonable performance for moderate range of subdomains [29–31].
To enhance the performance further, a two-level domain decompo-
sition preconditioner for the stochastic system is proposed by the
authors [1,2,32,33]. For SPDEs, the algorithm may be considered
as a probabilistic extension of the balancing domain decomposi-
tion by constraints (BDDC) [34,35].

For deterministic PDEs, the dual-primal finite element tearing
and interconnect (FETI-DP) domain decomposition solver is shown
to be scalable with respect to mesh size, subdomain size and fixed
problem size per subdomain [36,37]. The condition number of the
preconditioned FETI-DP operator is shown to be bounded as the
number of subdomains with fixed problem size increases [38]. In
this investigation, the research initiative is directed towards devel-
oping a probabilistic FETI-DP solver that is scalable not only with
respect to the geometric parameters, but also with respect to the
strength of randomness and the order of the stochastic expansion.

For deterministic PDEs, BDDC [35,39,40] and FETI-DP [36,37]
are perhaps the most popular non-overlapping domain decomposi-
tion techniques for the iterative solution of large-scale determinis-
tic linear systems. BDDC provides a two-level preconditioner for
the solution of the so-called primal interface problem (Schur com-
plement system). On the contrary, FETI-DP iteratively solves a sys-
tem of Lagrange multipliers for the so-called dual interface system.
While the coarse problem essential for scalability is built in the
BDDC preconditioner, it is embedded within the FETI-DP operator.
For deterministic systems, it has already been demonstrated that
the condition number and thus the parallel performance of BDDC
and FETI-DP are quite similar [35,41–45]. Indeed, the precondi-
tioned operators in BDDC and its counterpart in FETI-DP have the
same algebraic structure with identical eigenvalues except possi-
bly for zero and one [41]. This fact indicates that the convergence
properties of both BDDC and FETI-DP are similar for the same pri-
mal constraints [42]. It is therefore natural to ask whether the sim-
ilarity of BDDC and FETI-DP extends to stochastic systems. We
address this question in part using numerical experiments in this
paper.

Within a general framework of iterative substructuring tech-
niques for SPDEs [1,2,28–33], we formulate a probabilistic version
of FETI-DP for the iterative solution of the deterministic linear sys-
tem in the SSFEM [1,2,46]. In the dual-primal method for stochastic
systems, the physical domain is decomposed into a number of non-
overlapping subdomains. The polynomial chaos expansion is used
to represent the uncertain system parameters and solution pro-
cesses. For each subdomain, the solution vector are divided into
the interior and interface unknowns [36,37]. The interface un-
knowns are further split into the sets of corner and remaining vari-
ables. In each iteration of the preconditioned conjugate gradient
method (PCGM) for the probabilistic dual interface system, the glo-

bal assembly for the chaos coefficients of the solution process at
the corner nodes is performed to strictly enforce the continuity
conditions.In addition, Lagrange multipliers are utilized to weakly
satisfy the continuity of the polynomial chaos coefficients on the
remaining nodes of the interface. Consequently, a probabilistic
coarse problem is embedded in the operator of the dual interface
system of FETI-DP. The introduction of the coarse problem in the
probabilistic framework leads to a scalable performance of FETI-
DP solver for large-scale stochastic systems.

The convergence properties, numerical and parallel scalabilities
of both the probabilistic BDDC and FETI-DP are contrasted for two-
dimensional flow through porous media and linear elasticity prob-
lems with spatially varying system parameters modeled as non-
Gaussian stochastic processes. The weak and strong scalabilities
of the algorithms are investigated on a Linux cluster consisting of
22 nodes with 2 Quad-Core 3.0 GHz Intel Xeon processors and
32 GB of memory per node with InfiniBand interconnect. The algo-
rithms are implemented using MPI [47] and PETSc [48] parallel li-
braries. The finite element mesh is decomposed using METIS [49]
graph partitioning tool.

In this paper, we present a brief review of one- and two-level
primal domain decomposition approaches for SPDEs in Sections
2–4. For a comprehensive review of the mathematical framework
of these algorithms, we refer to [46]. The dual-primal approach
for SPDEs is introduced in Section 5. Preconditioners for the prob-
abilistic FETI-DP method are introduced in Section 6. We show a
connection between the primal and dual-primal approaches for
uncertainty quantification in Section 7. The parallel implementa-
tion of the proposed probabilistic FETI-DP algorithm is outlined
in Section 8. The numerical results are presented in Section 9 and
some conclusions are drawn in Section 10.

2. Schur complement system of the stochastic problems

The finite element approximation of an elliptic SPDE leads to
the following linear system (e.g. [3,17])

AðhÞuðhÞ ¼ f; ð1Þ

where AðhÞ is the stiffness matrix with random coefficients, uðhÞ de-
notes the stochastic response vector and f represents the external
force vector. For large-scale systems, we exploit iterative substruc-
turing techniques to solve Eq. (1) as detailed in [1,2,28–33]. The
iterative substructuring algorithm involves partitioning the compu-
tational domain X into ns subdomains, X ¼

Sns
s¼1Xs, with the inter-

face boundary C ¼
Sns

s¼1Cs where Cs ¼ @Xs n @X. Using this
decomposition, the subdomain equilibrium system can be ex-
pressed as [1,2,28–33]
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where us
I ðhÞ corresponds to the interior unknowns of the subdomain

Xs and us
CðhÞ denotes the interface unknowns shared among adja-

cent subdomains as shown schematically in Fig. (1).
Representing the stochastic system parameters using PCE, leads

to the following system for the subdomain Xs as
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where WiðhÞ is a set of orthogonal multi-dimensional Hermite poly-
nomials. The orthogonality property is defined as [3,15,16]

hWiðhÞWjðhÞi ¼ hW2
i ðhÞidij; ð4Þ

where dij is the Kronecker delta and h�i denotes the expectation
operator.
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