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a b s t r a c t

A new hybrid approach for the time domain analysis of linear stochastic structures with uncorrelated or
correlated random variables is proposed. This new hybrid approach combines the modal approach, the
second-order perturbation technique and the number theoretical method (NTM). In the hybrid approach,
an approximate stochastic model of the finite element (FE) model is developed in the sense of first-order
accuracy, which provides second-order estimations of the mean and covariance matrices of structural
responses. Compared with the FE model, the proposed model is more convenient in terms of the compu-
tation effort it requires. By employing the NTM to evaluate the statistical moments of solutions of the
approximate model, the secular terms, contained in the results of the perturbation stochastic finite ele-
ment method, are eliminated. Two numerical examples are presented to demonstrate the accuracy and
efficiency of the method proposed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In engineering, the dynamic analysis of stochastic structures is
quite important. The dynamic responses of a true structure are
influenced by various random factors such as unpredictable exter-
nal excitations, random material parameters, random geometric
properties, and so on. For a deterministic structure, many accurate
and efficient approaches have been developed, e.g., the finite ele-
ment method (FEM). However, these deterministic approaches
cannot be employed in the stochastic case, which requires stochas-
tic approaches. Usually, the use of random field approaches in
combination with the well-known FEM is referred to as the sto-
chastic finite element method (SFEM). A number of approximate
methods [1] have been proposed to solve stochastic systems. These
approximate methods can be roughly categorized as being based
on the Monte Carlo simulation method (MCS), the spectral stochas-
tic finite element method (SSFEM) or the perturbation stochastic fi-
nite element method (PSFEM).

Among the proposed stochastic approaches, MCS is the most
widely used method. This method is applicable to any stochastic
problems. When MCS is used for a stochastic structure, a number
of deterministic analyses need to be performed first, which re-
quires considerable computational effort. Recently, some develop-

ments have been proposed in the literature. In [2,3], the parallel
MCS was developed. In [4,5] the method that combines the sub-
space iterative method with MCS was proposed to address the
eigenproblems of stochastic structures. In [6], the Neumann expan-
sion was introduced in conjunction with MCS to perform dynamic
analysis of stochastic structures in the frequency domain. In [7],
the Neumann MCS was employed to perform time domain analysis
of stochastic systems. Although many enhancements to MCS have
been proposed, it is still too time-consuming. In SSFEM, another
type of stochastic method, the random field is usually discretized
using the Karhunen–Loève expansion, and the structure’s nodal
displacements are approximated using a polynomial chaos (PC)
expansion [1,8]. The computational cost of SSFEM is smaller than
that of MCS. However, the computational effort increases exponen-
tially with the order and number of uncertain quantities involved,
which puts some practical restrictions on this method. In [9], a
numerical solution of SSFEM was presented. In [10], a condensa-
tion technique was suggested to reduce the computational cost
of SSFEM and compute the non-stationary random vibration re-
sponse of an uncertain linear system. In [11], hybrid perturba-
tion-PC approaches to random eigenproblems were proposed.
The literature to date on SSFEM has addressed mainly static sto-
chastic problems.

PSFEM, which is also widely used due to its computational effi-
ciency, is aimed primarily at stochastic structures with low-level
uncertainties. Fortunately, for many real engineering structures
with random material and geometric parameters, the coefficients
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of variation of these random parameters are usually small. As with
SSFEM, studies on PSFEM have mainly addressed static stochastic
problems. The results of time domain analyses of stochastic sys-
tems using PSFEM contain secular terms. Hence, PSFEM is often
used to perform frequency domain analyses of stochastic systems.
In [12], PSFEM was employed to perform the modal analysis of pro-
pellers. An approach based on PSFEM and mode superposition was
suggested in [13] to analyze linear stochastic systems in the time
domain. In [14], PSFEM was applied to the time domain analysis
of nonlinear stochastic structures. The state variable vector was
introduced in [15] in conjunction with PSFEM for the time domain
analysis of stochastic structures. None of these studies has ad-
dressed the problem of secular terms. The generalized nth PSFEM
was developed in [16,17] to improve the accuracy of PSFEM. How-
ever, the computational effort of this method increases exponen-
tially with the order and number of uncertain quantities
involved. In [18], a hybrid approach that combines the perturba-
tion technique, modal approaches and MCS was developed for
use in dynamic analysis of stochastic structures in the frequency
domain. A drawback of this method is that the probability density
function (PDF) of structure frequencies need to be guessed in terms
of the means and variances of frequencies.

There are other approaches available for addressing stochastic
problems. An approach to static analysis [19,20] and frequency
domain analysis [21] of linear stochastic systems has been pro-
posed that can yield the explicit relationship between the system
response and random parameters. A method based on generalized
probability density evolution and the number theoretical method
(NTM) was proposed in [23–25]. In [26–28], the pseudo excitation
method was developed for the frequency domain analysis of
structures with random excitations. This method is not applicable
to a stochastic system with random material and geometric
parameters. Reviews of these stochastic approaches can be found
in [1,22].

A limited amount of research on the time domain analysis of
stochastic structures has been conducted. MCS and SSFEM are of-
ten too time-consuming. PSFEM is limited because of the presence
of secular terms in the results. In this paper, a new approach that
combines the perturbation technique, the number theoretical
method (NTM) [29–31] and the modal approach is proposed for
analysis of stochastic dynamic systems with low-level uncertain-
ties. This hybrid approach can produce second-order estimations
of the mean and covariance matrices of structural responses and
can remove the secular term. In the next section, the proposed
method is described in detail. A summary of the proposed method
and its algorithm are presented in Section 3. In Section 4, two
numerical examples are presented. The numerical results are com-
pared with results obtained using MCS and PSFEM.

2. The proposed method

2.1. The basic idea

Suppose that the model of a linear stochastic dynamic system
produced by the finite element method (FEM) can be written as

M eð Þ€u tð Þ þ C eð Þ _u tð Þ þ K eð Þu tð Þ ¼ F tð Þ ð1Þ

where M; C and K are the mass, damping and stiffness matrices,
respectively. F is the load vector. u; _u and €u are the displacement,
velocity and acceleration vectors, respectively. t is the time.
e ¼ eif g is the random vector containing q zero-mean random vari-
ables, where q is the number of random variables. The standard
deviation of ei is denoted by ri. If the perturbation method is em-
ployed to solve an undamped dynamic system, the solution can
be expanded as

u e; tð Þ ¼ u0 tð Þ þ
Xq

i¼1

u1;i tð Þei þ
Xq

i¼1

Xq

j¼i

u2;ij tð Þeiej þ O e3
i

� �
ð2Þ

According to the perturbation theory [35], u1;i tð Þ contains sev-
eral terms multiplied by t that lead to u1;i tð Þ

�� ��! þ1 for t ! þ1.
These terms are usually called the secular terms. However, damp-
ing is useful in eliminating the secular terms. In this study, to over-
come the negative influences of the secular terms, a hybrid
approach is proposed. The basic idea of the proposed method here
is the use of the second-order perturbation technique and the
modal approach to produce an approximate model of the FEM
model. Compared with the original model governed by Eq. (1),
the approximate one is more convenient to compute and can pro-
vide the second-order estimates of the mean and covariance matri-
ces of structural responses.

2.2. The modal approach

Suppose further that C is a type of proportional damping matrix.
The modal approach can be applied to Eq. (1). Let us define the
eigenproblem of such a stochastic dynamic system as

K eð Þxk eð Þ ¼ kk eð ÞM eð Þxk eð Þ ð3Þ

xT
kMxl ¼ 0; k – l ð4Þ

in which xk and kk are the kth eigenvector and eigenvalue, respec-
tively. We know that the displacement can be expressed as

u ¼
XN

k¼1

akxk ð5Þ

where N is the number of degrees of freedom (DOF). Substituting
Eq. (5) into Eq. (1), we have

XN

k¼1

€aiM eð Þxi þ
XN

k¼1

_aiC eð Þxi þ
XN

k¼1

aiK eð Þxi ¼ F ð6Þ

Multiplying both sides of Eq. (6) by xT
k in conjunction with Eq. (4)

produces

mk€ak þ ck _ak þ kkak ¼ fk ð7Þ

where

mk ¼ xT
kM eð Þxk; ck ¼ xT

kC eð Þxk

kk ¼ xT
kK eð Þxk; f k ¼ xT

kF
ð8Þ

The initial conditions are

ak t0ð Þ ¼ xT
ku t0ð Þ; _ak t0ð Þ ¼ xT

k
_u t0ð Þ ð9Þ

in which t0 represents the initial time. In terms of Eq. (5), the mean
and covariance matrices of the displacement can be written as

E uð Þ ¼
XN

k¼1

E akxkð Þ ð10Þ

cov u;uð Þ ¼
XN

k¼1

XN

l¼1

cov akxk; alxlð Þ ð11Þ

It can be found from Eqs. (10) and (11) that xk is necessary for
evaluating the mean and covariance of the displacement vector.
In the next section the second-order perturbation technique is
introduced for determining the eigenvector xk.

2.3. The second-order estimates of eigenvectors

First, let us expand the mass, damping and stiffness matrices via
Taylor series as

72 F. Wu, W.X. Zhong / Comput. Methods Appl. Mech. Engrg. 265 (2013) 71–82



Download English Version:

https://daneshyari.com/en/article/6917782

Download Persian Version:

https://daneshyari.com/article/6917782

Daneshyari.com

https://daneshyari.com/en/article/6917782
https://daneshyari.com/article/6917782
https://daneshyari.com

