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a b s t r a c t

We consider the numerical treatment of one of the most popular finite strain models of the viscoelastic
Maxwell body. This model is based on the multiplicative decomposition of the deformation gradient,
combined with Neo-Hookean hyperelastic relations between stresses and elastic strains. The evolution
equation is six dimensional and describes an incompressible flow such that the volume changes are
purely elastic. For the corresponding local initial value problem, a fully implicit integration procedure
is considered, and a simple explicit update formula is derived. Thus, no local iterative procedure is
required, which makes the numerical scheme more robust and efficient. The resulting integration algo-
rithm is unconditionally stable and first order accurate. The incompressibility constraint of the inelastic
flow is exactly preserved. A rigorous proof of the symmetry of the consistent tangent operator is pro-
vided. Moreover, some properties of the numerical solution, like invariance under the change of the ref-
erence configuration and positive energy dissipation within a time step, are discussed. Numerical tests
show that, in terms of accuracy, the proposed integration algorithm is equivalent to the classical implicit
scheme based on the exponential mapping. Finally, in order to check the stability of the algorithm numer-
ically, a representative initial boundary value problem involving finite viscoelastic deformations is con-
sidered. A FEM solution of the representative problem using MSC.MARC is presented.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Among idealized models of linear viscoelasticity, the so-called
Maxwell fluid (MF) is commonly encountered in material modeling
[52,17,2]. The one-dimensional rheological interpretation of this
model is shown in Fig. 1(a).1 A series of Maxwell elements con-
nected in parallel [66] can be utilized to represent viscoelastic prop-
erties of polymers (Fig. 1(b)). In that case, the stresses acting in the
Maxwell elements can be associated with overstresses [17]. Next, a
slightly modified Maxwell element can be adopted to capture the
nonlinear kinematic hardening in metals (Fig. 1(c)). In that case,
the corresponding Maxwell stresses are interpreted as backstresses
[39,3,65,7,56]. Moreover, within some phenomenological ap-
proaches to metal plasticity, the distortional hardening in metals
can be captured using the modified MF [57,59]. Other groups of
materials like shape memory alloys [19,21] and biological tissues
[8] can be modeled using MF. Some applications of MF to finite
deformations of geological structures [60,48] and to fluid mechanics
[1] are reported in the literature as well.

In the finite strain range, numerous constitutive models of the
MF exist (see, among others, [37,28,33,47,45,46,24,4,50,1,17,18 ,35]).
Different variants were compared through numerical tests in
[10,34]. In this paper we consider one of the most popular models
of the MF. The corresponding constitutive equations are summa-
rized in Section 2 of this work. The model under consideration is
a special case of the finite strain viscoplasticity model proposed
by Simo and Miehe [61], and it has the same structure as the well
known model of associative elastoplasticity considered by Simo
[62]. These models were developed within the framework of mul-
tiplicative inelasticity in combination with hyperelastic constitu-
tive relations. The corresponding inelastic flow rule2 is six
dimensional since the inelastic spin plays no role due to elastic isot-
ropy. A version of the MF which is equivalent to the version of Simo
and Miehe was considered later in material (Lagrangian) description
by Lion [38]. This Lagrangian formulation was adopted in
[40,19,13,53,55–58]. The spatial (Eulerian) constitutive equations
proposed by Simo and Miehe were utilized later in the comprehen-
sive study by Reese and Govindjee [50], and by many others (see, for
instance, [25,43,48,31,16,23,49,36]).
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1 A two-dimensional rheological model of the Maxwell fluid and its modifications
can be found in [57,59].

2 In this paper, the evolution equation is referred to as ‘‘inelastic flow rule’’ in order
to stress that the model is a special case of a viscoplastic model.
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In the modern literature on numerical mechanics, much atten-
tion is paid to general procedures which can be implemented to
different types of constitutive relations in a straightforward man-
ner. Because of their generality, such procedures are not always
efficient being compared to algorithms which make use of the spe-
cial structure of the underlying constitutive equations. Due to the
high prevalence of the Simo and Miehe version of the Maxwell
fluid in material modeling, efficient and robust numerical integra-
tion of the underlying evolution equations is a challenging task. The
main purpose of this paper is to report a new, simple, and efficient
numerical procedure for this model.

Since the corresponding initial value problem is typically stiff,
implicit time stepping methods should be implemented. For the
Simo and Miehe version of the MF, a discretized problem can be
obtained using the operator split technique in combination
with exponential mapping and formulation in principal axes as
described in [62,50] (Eulerian approach). Alternatively, the evolu-
tion equation formulated on the reference configuration can be dis-
cretized as described in [11] (Lagrangian approach). In both cases, a
system of nonlinear algebraic equations is obtained, and a local
iterative procedure is usually implemented to resolve the resulting
nonlinear problem (see, among others, [50,44,13,14,48,20,31,54,
65,16,23,49,36]). Obviously, such iterative procedures can slow
down the entire FEM simulation. This problem may become espe-
cially important if globally explicit FEM is considered.3 This publi-
cation is dealing with first-order accurate methods only. For the
discussion concerning the application of higher order methods, the
reader is referred to [51,15,5,6].

In order to speed up the FEM computations, much attention was
paid to the construction of closed form solutions for implicit
schemes. For instance, a simplified flow rule under the assumption
of small elastic strains was considered by Simo and Miehe [61] in
order to get an explicit update formula for the local implicit time
stepping procedure. For the same reason, another simplification
of the flow rule in case of small elastic strains was considered by
Reese and Govondjee [50]. This simplified version was imple-
mented later in [27]. Unfortunately, the simplifying assumption
of small elastic strains is not valid for many materials like plastics,
rubber, biological tissues etc. Moreover, if the modified Maxwell
body is used to capture nonlinear kinematic hardening in metals,
a general finite strain version of the model must be utilized as
well.4 Another approach to closed form solution is based on special
assumptions concerning the energy storage. In particular, a qua-
dratic logarithmic strain energy (so-called Hencky strain energy)
can be assumed in order to simplify the numerical treatment of
the material model [41]. Unfortunately, this assumption would yield
unrealistic results in case of large elastic strains. Thus, again, the

applicability area is limited to moderate elastic strains. In this work,
a simple explicit update formula is presented for the original finite
strain version with Neo-Hookean potential. Interestingly, this expli-
cit solution for the general case is even more compact and simple
than the solutions presented in [61,50] for the special case of small
elastic strains or the solution in [41] for quadratic logarithmic strain
energy. For the new method, the computational effort per single
time step is even smaller than the effort required within the explicit
time stepping.

The inelastic flow is assumed to be incompressible, and the
algorithm presented in this work preserves this incompressibility
constraint. A classical model of finite strain viscoplasticity which
contains the Simo and Miehe version of the MF was considered
in [55]. As it was shown in [55], the exact solution to the initial
value problem is exponentially stable with respect to small pertur-
bations of the initial data, if the incompressibility constraint is not
violated. For such material models, the numerical schemes which
exactly preserve the incompressibility are advantageous due to
the suppressed error accumulation [55]. This theoretical result is
confirmed by numerical tests presented in the current paper.

Dealing with the constitutive equations written in Lagrangian
form, it can be shown that they are invariant under isochoric
changes of the reference configuration [58]. The same invariance
property can be formulated for the numerical solution as well.
Obviously, the numerical algorithms which exactly retain this
invariance property are advantageous. In this work, it is proved
that the advocated algorithm retains the invariance of the solution.

We close this introduction with a few words regarding notation.
Throughout this article, bold-faced symbols denote first- and sec-
ond-rank tensors in R3. A coordinate-free tensor formalism is used
in this work [26,54]. In this work, 1 stands for the second-rank
identity tensor. The deviatoric part of a tensor is defined as
AD :¼ A� 1

3 trðAÞ1, where trðAÞ stands for the trace. The material
time derivative is denoted by dot: d

dt A ¼ _A. The overline ð�Þ denotes
the unimodular part of a tensor such that

A ¼ ðdet AÞ�1=3A: ð1Þ

The inverse of transposed tensor is denoted by A�T. The positive def-
initeness of a tensor A is symbolically denoted by A > 0.

2. System of constitutive equations

2.1. Lagrangian formulation

Let us consider a finite strain model of Maxwell fluid. This mod-
el is covered as a special case by the viscoplasticity model pre-
sented by Simo and Miehe [61]. The Lagrangian formulation of
the model follows the presentation of Lion [38]. Let F be the defor-
mation gradient from the local reference configuration ~K to the
current configuration K. We start with the multiplicative

Fig. 1. (a) A one-dimensional Maxwell body consists of an elastic spring (Hooke body) coupled in series with a viscous dashpot (Newton body), (b) Generalized Maxwell body,
also known as Wiechert model (or Zener model in a special case) used for description of viscoelastic properties, (c) modified Schwedoff model used to represent nonlinear
kinematic hardening.

3 In the case of explicit FEM, the evaluation of the material routine at each point of
Gauss integration constitutes the major part of the overall computational effort.

4 In fact, although the elastic strains in metals are typically small (ee ! 0 in
Fig. 1(c)), the conservative part (eie in Fig. 1(c)) of the inelastic strain may become
finite.
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