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a b s t r a c t

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body
and a foundation. The material’s behavior is modeled with a constitutive law with long memory. The con-
tact is frictionless and is modeled with a multivalued normal compliance condition and unilateral con-
straint. We present the classical formulation of the problem, list the assumptions on the data and
derive a variational formulation of the model. Then we prove its unique solvability. The proof is based
on arguments of history-dependent quasivariational inequalities. We also study the dependence of the
solution with respect to the data and prove a convergence result. Further, we introduce a fully discrete
scheme to solve the problem numerically. Under certain solution regularity assumptions, we derive an
optimal order error estimate. Finally, we provide numerical validations both for the convergence and
the error estimate results, in the study of a two-dimensional test problem.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Considerable progress has been achieved recently in modeling,
mathematical analysis and numerical simulations of various con-
tact processes and, as a result, a general Mathematical Theory of
Contact Mechanics is currently emerging. It is concerned with
the mathematical structures which underlie general contact prob-
lems with different constitutive laws, i.e. materials, varied geome-
tries and different contact conditions. Comprehensive references
on the topic include the monographs [5–7,11,18,20–22,24]. The
state of the art in the field can be found in the proceedings
[17,25,27] as well. The aim of this paper is to study a frictionless
contact problem for rate-type viscoplastic materials within the
framework of the Mathematical Theory of Contact Mechanics.
We model the material’s behavior with a constitutive law of the
form

rðtÞ ¼ AeðuðtÞÞ þ
Z t

0
Bðt � sÞeðuðsÞÞds; ð1:1Þ

where u denotes the displacement field, r represents the stress ten-
sor and eðuÞ is the linearized strain. Here A is the elasticity operator,
allowed to be nonlinear, and B represents the relaxation operator,
assumed to be linear.

Quasistatic contact problems for materials following the law
(1.1) can be found in [24] and the references therein. There, the
contact was assumed to be frictionless and was modeled with nor-
mal compliance and unilateral constraint; the unique weak solv-
ability of the corresponding problems was proved by using
arguments of history-dependent variational inequalities. The nor-
mal compliance contact condition was first introduced in [19]
and since then used in many publications, see, e.g., [11–13,16]
and references therein. The term normal compliance was first intro-
duced in [12,13]. The current paper has three traits of novelties
that we describe in what follows. First, the model we consider in-
volves a contact condition with multivalued normal compliance
and unilateral constraint. This condition takes into account both
the deformability and the rigidity of the foundation. Second, we
provide the numerical analysis of the problem, including error esti-
mates for fully discrete scheme. Last, we present numerical simu-
lations which validate our theoretical results. The rest of the paper
is structured as follows. In Section 2 we present the notation as
well as some preliminary material. In Section 3 we describe the
model of the contact process. In Section 4 we list the assumptions
on the data and derive the variational formulation of the problem.
Then we state and prove an existence and uniqueness result, The-
orem 4.1. In Section 5 we state and prove a convergence result,
Theorem 5.1, on the continuous dependence of the solution with
respect to the data. In Section 6 we introduce a fully discrete
scheme to solve the problem numerically. Under certain solution
regularity assumptions, we derive an optimal order error estimate.
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Finally, in Section 7 we present numerical simulation results on a
two-dimensional example.

2. Notations and preliminaries

We use N� for the set of positive integers and Rþ for the set of
nonnegative real numbers, i.e. Rþ ¼ ½0;þ1Þ. For a given r 2 R we
denote by rþ for its positive part, i.e. rþ ¼maxfr;0g. Let X be a
bounded domain X � Rd ðd ¼ 1;2;3Þ with a Lipschitz continuous
boundary C and let C1 be a measurable part of C such that
measðC1Þ > 0. We use x ¼ ðxiÞ for a generic point in X [ C and de-
note by m ¼ ðmiÞ the outward unit normal on C. Here and below the
indices i; j; k; l run between 1 and d and, unless stated otherwise,
the summation convention over repeated indices is used. An index
that follows a comma represents the partial derivative with respect
to the corresponding component of the spatial variable, e.g.
ui;j ¼ @ui=@xj.

We denote by Sd the space of second order symmetric tensors
on Rd or, equivalently, the space of symmetric matrices of order
d. The inner products and norms on Rd and Sd are defined by

u � v ¼ uiv i; kvk ¼ ðv � vÞ
1
2 8u;v 2 Rd;

r � s ¼ rijsij; ksk ¼ ðs � sÞ
1
2 8r; s 2 S

d:

We use standard notation for Lebesgue and Sobolev spaces in X and
on C. Let

V ¼ fv ¼ ðv iÞ 2 H1ðXÞd : v ¼ 0 on C1g; Q ¼ fs ¼ ðsijÞ 2 L2ðXÞd�d

: sij ¼ sjig:

These are real Hilbert spaces endowed with the inner products

ðu;vÞV ¼
Z

X
eðuÞ � eðvÞdx; ðr; sÞQ ¼

Z
X
r � sdx

and the associated norms k � kV and k � kQ , respectively. Here e rep-
resents the deformation operator given by

eðvÞ ¼ ðeijðvÞÞ; eijðvÞ ¼
1
2
ðv i;j þ v j;iÞ 8v 2 H1ðXÞd:

Completeness of the space ðV ; k � kV Þ follows from Korn’s inequality
due to the assumption measðC1Þ > 0.

For an element v 2 V we still write v for the trace of v on the
boundary and we denote by vm and vs the normal and tangential
components of v on C, given by vm ¼ v � m;vs ¼ v � vmm. Let C3

be a measurable part of C. Then, by the Sobolev trace theorem,
there exists a positive constant c0 depending on X;C1 and C3 such
that

kvkL2ðC3Þd
6 c0 kvkV 8v 2 V : ð2:1Þ

For a regular function r 2 Q we use the notation rm and rs for the
normal and the tangential traces, i.e. rm ¼ ðrmÞ � m and
rs ¼ rm � rmm. Moreover, we recall that with the divergence opera-
tor defined by the equality Divr ¼ ðrij;jÞ, the following Green’s for-
mula holds:Z

X
r � eðvÞdxþ

Z
X

Divr � v dx ¼
Z

C
rm � v da 8v 2 V : ð2:2Þ

Finally, we denote by Q1 the space of fourth order tensor fields gi-
ven by

Q1 ¼ fE ¼ ðE ijklÞ : E ijkl ¼ E jikl ¼ Eklij 2 L1ðXÞ; 1 6 i; j; k; l 6 dg

which is a real Banach space with the norm

kEkQ1
¼

X
16i;j;k;l6d

kE ijklkL1ðXÞ:

A simple calculation shows that

kEskQ 6 kEkQ1
kskQ 8E 2 Q1; s 2 Q : ð2:3Þ

For each Banach space X we use the notation CðRþ; XÞ for the
space of continuous functions defined on Rþ with values in X.
For a subset K � X we use the symbol CðRþ; KÞ for the set of
continuous functions defined on Rþ with values in K. It is well
known that CðRþ; XÞ can be organized in a canonical way as a
Fréchet space, i.e. as a complete metric space in which the
corresponding topology is induced by a countable family of
seminorms. Details can be found in [4,15], for instance.
Here we only recall that the convergence of a sequence ðvkÞk
to an element v, in the space CðRþ; XÞ, can be described as
follows:

vk ! v in CðRþ; XÞ as k!1 if and only if
max
t2½0;n�
kvkðtÞ � vðtÞkX ! 0 as k!1; for all n 2 N�:

(
ð2:4Þ

Consider now a real Hilbert space X with inner product ð�; �ÞX
and associated norm k � kX . Let K be a subset of X and consider oper-
ators A : K ! X, R : CðRþ; XÞ ! CðRþ; XÞ as well as functions
j : K ! R; f : Rþ ! X with the following properties.

K is a nonempty; closed; convex subset of X: ð2:5Þ

ðaÞ There exists m > 0 such that

ðAu1 � Au2;u1 � u2ÞX P mku1 � u2k2
X 8u1; u2 2 K:

ðbÞ There exists M > 0 such that
kAu1 � Au2kX 6 Mku1 � u2kX 8u1; u2 2 K:

8>>><>>>: ð2:6Þ

For every n 2 N� there exists rn > 0 such that
kðRu1ÞðtÞ � ðRu2ÞðtÞkX 6 rn

R t
0 ku1ðsÞ � u2ðsÞkX ds

8u1; u2 2 CðRþ; XÞ; 8 t 2 ½0;n�:

8><>: ð2:7Þ

The function j : K

! R is convex and lower semicontinuous: ð2:8Þ

f 2 CðRþ; XÞ: ð2:9Þ

The following result will be used in Section 4 of this paper.

Theorem 2.1 (Assume (2.5)–(2.9)). Then there exists a unique func-
tion u 2 CðRþ; KÞ such that, for all t 2 Rþ, the inequality below holds:

ðAuðtÞ; v � uðtÞÞX þ ððRuÞðtÞ;v � uðtÞÞX þ jðvÞ � jðuðtÞÞ
P ðf ðtÞ;v � uðtÞÞX 8v 2 K: ð2:10Þ

Theorem 2.1 represents a particular case of a more general re-
sult proved in [23]. Following the terminology introduced there,
we refer to an operator R satisfying the condition (2.7) as a his-
tory-dependent operator. Moreover, (2.10) represents a history-
dependent quasivariational inequality.

3. The model

The physical setting is as follows. A viscoelastic body occupies
a bounded domain X � Rd ðd ¼ 1;2;3Þ with a Lipschitz
continuous boundary C, divided into three measurable parts
C1;C2 and C3, such that measðC1Þ > 0. The body is subject to
the action of body forces of density f 0 in X and of surface trac-
tions of density f 2 on C2. It is fixed on C1 and is in frictionless
contact on C3 with a deformable obstacle, the so-called founda-
tion. We assume that the contact process is quasistatic and we
study it in the interval of time Rþ ¼ ½0;1Þ. Then, the classical
formulation of the contact problem we consider in this paper
is the following.
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