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a b s t r a c t

We present a method to blend local maximum entropy (LME) meshfree approximants and isogeometric
analysis. The coupling strategy exploits the optimization program behind LME approximation, treats iso-
geometric and LME basis functions on an equal footing in the reproducibility constraints, but views the
former as data in the constrained minimization. The resulting scheme exploits the best features and over-
comes the main drawbacks of each of these approximants. Indeed, it preserves the high fidelity boundary
representation (exact CAD geometry) of isogeometric analysis, out of reach for bare meshfree methods,
and easily handles volume discretization and unstructured grids with possibly local refinement, while
maintaining the smoothness and non-negativity of the basis functions. We implement the method with
B-Splines in two dimensions, but the procedure carries over to higher spatial dimensions or to other non-
negative approximants such as NURBS or subdivision schemes. The performance of the method is illus-
trated with the heat equation, and linear and nonlinear elasticity. The ability of the proposed method to
impose directly essential boundary conditions in non-convex domains, and to deal with unstructured
grids and local refinement in domains of complex geometry and topology is highlighted by the numerical
examples.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Approximants selected by maximum entropy (max-ent) are
non-negative smooth meshfree approximation schemes, optimal
from an information theory viewpoint [1,2]. The non-negativity
and first-order reproducing conditions endow these approximants
with the structure of convex geometry [1], like linear finite ele-
ment, natural neighbor method [3], subdivision approximants
[4], or B-Spline and Non-Uniform Rational B-Splines (NURBS) basis
functions [5]. Max-ent approximants have been extended to second
order [6,7], and to arbitrary order by dropping non-negativity [8].

Local maximum entropy (LME) approximants allow us to flexi-
bly control the support of the basis functions on unstructured grids
of points [1,9]. Their non-negativity endow them with variation
diminishing properties, as well as with a weak Kronecker-delta
property on the boundary of the convex hull of the set of nodes
[1], by which interior basis functions vanish at the boundary of
the convex hull, and basis functions vanish at any given face unless
the corresponding node belongs to that face of the boundary.
Thanks to this property, essential boundary conditions can be eas-
ily imposed on polygonal convex domains, in contrast with other

meshfree methods [10]. Furthermore, the evaluation of the LME
basis functions is very efficient using duality methods [1]. The
main drawback of these approximants is given by the inherent lim-
itation of meshfree methods to represent complex boundaries with
high fidelity. In such methods, the boundaries that can be repre-
sented by a mere collection of points are polytopes, either the con-
vex hull or more controllable domains given by alpha shapes [11].
Furthermore, the weak Kronecker-delta property of LME approxi-
mants does not hold in non-convex parts of the domain [1].

Motivated by the recent impetus on isogeometric analysis
[5,12], which aims at integrating Computer Aided Design (CAD)
technologies, such as B-Splines, NURBS or subdivision surfaces
[4], and engineering analysis, we propose here using such high-
fidelity description of the boundary of the domain, while approx-
imating the interior with max-ent methods. Remarkably, the
limitations of LME approximants and of isogeometric analysis
are in some sense complementary, since the main drawback of
the latter is precisely the rigidity imposed by the NURBS frame-
work on the volume meshing, which requires special techniques
to go beyond tensor product meshes and accommodate trimmed
surfaces, local refinement, or incongruent surface descriptions at
opposing faces. Some of these issues are partially addressed in
2D with T-Spline technologies [13–17], hierarchical B-Splines
[18] or trimming techniques [19], but largely open in 3D
[20,21]. Three-dimensional subdivision schemes, producing
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smooth convex approximants from unstructured grids, are still
the topic of current research [22].

The goal of the proposed method is to unify in a common frame-
work the geometric fidelity of isogeometric boundary representa-
tions with the flexibility of meshfree approximants in the bulk of
the domain. Since both B-Splines and LME approximants are con-
vex schemes, we will show that they can be coupled through the
constraints in a max-ent program. The resulting approximation
scheme automatically retains the non-negativity and smoothness
of the B-Spline and LME parents. Although max-ent approximants
can be extended to higher-order consistency, at the expense of a
more involved formulation [6,7], numerical experiments show that
first-order consistent approximants perform very well, even in
high-order partial differential equations. In [7], we showed that
first-order LME approximants attain the same accuracy as 5th-or-
der B-Splines for structural vibrations, and are comparable to sec-
ond-order max-ent approximation schemes in a fourth-order phase
field model [23], or in thin shell problems [24,25], where they also
compete with subdivision finite elements.

In the same spirit of the method presented here, the NURBS en-
hanced finite element method (NEFEM) [26] adopts a NURBS
boundary representation, coupled to standard finite elements in
the interior of the domain. This approach exploits the high fidelity
geometry representation of isogeometric analysis, but does not in-
sist in preserving the smoothness and positivity of the basis func-
tions, placing more emphasis in the high-order reproducibility
conditions. On the other hand, Moving Least Squares (MLS) mesh-
free basis functions have been coupled with finite elements
through the consistency conditions [27].

The paper is organized as follows. Sections 2 and 3 provide the
main concepts about max-ent approximations schemes and the iso-
geometric representation of boundaries. In Section 4, we describe
the proposed blending strategy, and in Section 5 we report on illus-
trative numerical examples. Finally, Section 6 collects the conclud-
ing remarks.

2. Maximum entropy approximation schemes

In information theory and statistical inference, the principle of
max-ent is a means to infer the probability distribution, which best
represents the current state of knowledge about a process, consis-
tently with a priori information. This principle was adopted in [1,2]
to generate the least biased basis functions for nodal data approx-
imation. The key in this information theoretical viewpoint is to
interpret the approximants as probability distributions. This inter-
pretation follows from the partition of unity and the fact that we
require the approximants to be non-negative.

More concretely, consider the approximation of a function in a
domain X � Rd as a linear combination of basis functions associ-
ated with a set of nodes X ¼ fxaga¼1;...;N � Rd,

uðxÞ � uhðxÞ ¼
XN

a¼1

paðxÞua:

Rather than defining explicitly the basis functions paðxÞ, we view
them as unknowns, which need to fulfill the partition of unityPN

a¼1paðxÞ ¼ 1 and the first-order consistency conditionPN
a¼1paðxÞxa ¼ x. Additionally, we demand that paðxÞP 0. Compar-

ing these conditions with the definition of the convex hull of the set
of nodes

convX ¼ x 2 Rdjx ¼
XN

a¼1

gaxa; with ga P 0;
XN

a¼1

ga ¼ 1

( )
;

it follows that such an approximation scheme can only be defined in
domain satisfying X � convX.

If the node set is composed of more than dþ 1 affinely indepen-
dent points, there exist infinitely many convex approximation
schemes, and the principle of max-ent emerges as a selection prin-
ciple. These basis functions can be computed by maximizing the
information entropy subject to the constraints given by the repro-
ducibility conditions [1,2]. The max-ent framework is quite flexible
and allows us to consider other related approaches. The LME
approximants [1] represent the optimal compromise (in the Pareto
sense) between two competing objectives: (i) maximum locality of
the basis functions and (ii) maximum information entropy of the
scheme.

The convex program defining the LME approximants is

ðLMEÞ For fixed x minimize
XN

a¼1

bapa j x� xaj2 þ
XN

a¼1

pa ln pa;

subject to pa P 0; a ¼ 1; . . . ;N;XN

a¼1

pa ¼ 1;
XN

a¼1

paxa ¼ x;

where the non-negative parameters ba weigh the relative impor-
tance given to each objective in each nodal position [9].

The above program is convex, smooth and feasible for any spa-
tial dimension d (as long as x 2 convX), and produces C1 meshfree
non-negative functions paðxÞ [1]. Moreover, the constraints (con-
sistency conditions) guarantee solutions that reproduce exactly af-
fine functions (see [6,7,28,29] for higher-order approaches).
Duality methods provide an efficient route to solving the optimiza-
tion problem and computing almost explicitly paðxÞ at each evalu-
ation point x. Defining the partition function

Zðx; kÞ ¼
XN

b¼1

exp �bb j x� xbj2 þ k � ðx� xbÞ
h i

;

the LME basis functions can be computed as

paðxÞ ¼
1

Z x; k�ðxÞð Þ exp �ba j x� xaj2 þ k�ðxÞ � ðx� xaÞ
h i

;

where the Lagrange multiplier for the linear consistency condition
is the unique minimizer of a smooth convex unconstrained optimi-
zation problem, minimizing ln Z, efficiently solved with Newton’s
method [1].

The parameters ba ¼ ca=h2
a , where ca is a dimensionless aspect

ratio parameter and ha the typical nodal spacing, allow us to control
the locality (the support size) of the basis functions [1,9]. The
approximants become sharper and narrower as the dimensionless
parameter ca increases, and for values close to 4 and above they
are nearly indistinguishable from the affine Delaunay basis
functions, as illustrated in Fig. 1 in 1D. As ca tends to infinity, it
has been mathematically shown that the affine functions supported
on the Delaunay triangulation of the node set are recovered [1]. In
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Fig. 1. LME approximants enable a seamless and smooth transition from meshfree
to Delaunay affine basis functions. The transition is controlled by the non-
dimensional nodal parameters ca , which here take linearly varying values from
0:6 (left) to 6 (right).
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