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a b s t r a c t

In this paper, a novel domain decomposition method is introduced to solve a large finite element model.
In this method, the decomposed domains do not overlap and are connected using a simple connective
finite element, which influences the nodal point equilibrium between adjacent finite elements. This
approach has the advantage that it allows use of a direct method such as Gauss elimination even in a sin-
gular problem. The singular stiffness matrices from the floating domain without the Dirichlet boundary
conditions are changed into invertible stiffness matrices by assembling the connective elements. Another
advantage is that computational time and storage can be reduced by using a banded matrix in the direct
solver. In order to describe this proposed method, we first review the FETI method, which is the most
popular domain decomposition method. Then the proposed method is introduced with a technical
approach in a distributed computer system. Finally, the high scalability and computational efficiency
of the proposed method are verified by comparing with the traditional FETI method for 2D and 3D finite
element examples which have floating subdomains. In the result, we demonstrate high scalability for a
large finite element model.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The finite element method (FEM) is one of the most popular
numerical methods in engineering. Several FEM methodologies
have been developed over the past decades. Usually, two main fac-
tors are considered in FEM: numerical accuracy and efficiency. In
order to obtain more accurate results, computational inefficiency
is increased by using smaller mesh size or more meshes. This is
an important consideration in a large system with many equations
because fast processors and vast storage are needed. Therefore,
appropriate selection of mesh size and element number is primary
factor influencing performance and efficiency during computation.

Direct methods in FEM are often used for solving sparse linear
equations in a static or implicit dynamic analysis. Gauss elimina-
tion is currently the most effective direct method. It calculates
accurate results rapidly for inversing stiffness matrices in small-
scale systems with a small number of degrees of freedom. How-
ever, for solving a large system with many degrees of freedom, this
general direct method has limitations. Computational speed de-
clines and a vast storage is needed even though stiffness matrices
in FEM are symmetrical, positive definite and banded. The frontal
solution variant of Gauss elimination is proposed to overcome this

drawback [1]. When stiffness matrices are assembled, an order of
equation is eliminated at the same time. Therefore, the calculation
is very fast and requires little memory, but the order of assembly
ought to be carefully determined. This method has been considered
successful by many researchers; moreover, many commercial
programs use it at present. Later, the extended frontal method,
the so-called multifrontal method is proposed [2], and it is possible
to use parallel computing. In this method, some different fronts are
used, and better efficiency and stability can be obtained for numer-
ous problems. Recently, research based on this frontal method has
been performed with parallel algorithms [3–5].

In addition to a frontal solution based on the direct method, the
parallel method is also an effective method of solving large sparse
linear systems in FEM. The domain decomposition method (DDM)
is based on an iterative method and has been adapted to solve
physically different problems like fluid–structure interactions,
multiphase issues, and multiphysical structures. The mathematical
approach was first presented by Schwarz [6] to solve partial differ-
ential equations. The basic idea is that the original domain is first
split into subdomains, and each subdomain is computed by inde-
pendent solutions. In a computational approach, this method is
generally used with an iterative solution to solve a boundary value
problem between adjacent subdomains. The DDM is mainly classi-
fied into overlapping methods and non-overlapping methods. In
overlapping methods, subdomains on the interface overlap, and
unknown variables at the interface are solved by iterative methods
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with prescribed Dirichlet boundary conditions [7–9]. These
methods are based on the Additive Schwarz method. On the other
hand, in non-overlapping methods, interconnecting parameters
like Lagrange multipliers enforce continuity along the interface
through the use of unknown variables. The finite element tearing
and interconnect (FETI) method is a very popular non-overlapping
DDM [10]. In this method, the Lagrange multipliers represented by
interconnecting forces are prescribed into interface nodes on each
subdomain, and they are calculated with compatibility conditions
in between interface nodes. The FETI method is high scalable be-
cause CPUs can independently handle computations on different
subdomains in most steps of procedure. However, this method
has a severe drawback that numerical difficulty can occur when
the subdomain is in a floating situation without Dirichlet boundary
conditions; namely, when the stiffness matrix on floating domain
is singular. For FETI, both the pseudo-inverse matrix and the kernel
of stiffness matrix using factorization or geometric approach are
needed to overcome this problem [11,12]. Alternatively, the
dual-primal finite element tearing and interconnecting method
(FETI-DP) is proposed [13], which has been extended by many re-
searches [14–20]. The basic concept of the method is that some
interface nodes are imposed by continuity constraints to represent
primal variables, and other interface nodes are forced by Lagrange
multipliers called dual variables. This brilliant approach makes it
possible to invert a stiffness matrix for floating subdomains. In
addition, this DDM is used as an iterative method with pre-
conditioners. Therefore, when a large system is decomposed,
appropriate pre-conditioners are needed to obtain better
convergence, but numerical inefficiency can sometimes occur. In
order to avoid pre-conditioners with the iterative method, a few
DDM using direct methods have been attempted [21–23].

In this paper, we propose a simple non-overlapping DDM using
a direct method. As mentioned above, a direct method is more
competent than an iterative method for simple models. Therefore,
for large systems, a direct method can be effectively performed
with DDM if all small subdomains are prescribed by Dirichlet
boundary conditions. Moreover, it is not necessary to handle pseu-
do-inverse matrix and the kernel of stiffness matrix. This approach
provides high scalability with parallel analysis. We attempt to
combine the element on the subdomain with an interface element,
as prescribed by the Dirichlet boundary condition, in order to
create an invertible stiffness matrix. For this, the FETI method is
reviewed, and new non-overlapping DDM is proposed. Then, a par-
allel algorithm for a new method is presented in detail. Finally,
high scalability of the proposed method is verified by comparing
with FETI method.

2. The finite element tearing and interconnect (FETI) method

The FETI, which is a popular non-overlapping DDM based on
iterative solution, is reviewed in this section. In FEM, a system of
equations for static solid analysis can be written as

Ku ¼ f on X ð1Þ

in which K is the stiffness matrix, which is a symmetric positive
definite banded matrix, u is the displacement vector, f is the force
vector and X is the computational domain. When this computa-
tional domain X is divided into subdomain Xi where subscript i is
denoted by the ith subdomain, the system Eq. (1) can be defined
as follows

Kiui ¼ f i � BT
i k on Xi; i ¼ 1; . . . ;N ð2Þ

XN

i¼1

Biui ¼ 0 ð3Þ

where k is a Lagrange multiplier, N is the number of subdomains,
and B is the connectivity matrix composed with signed Boolean
entries.

Assuming that the computational domain is decomposed into a
subdomain X 1 prescribed by a boundary condition and floating
subdomains Xi+1 as in Fig. 1, displacements on each subdomain
can be defined by Eq. (2) as follows

u1 ¼ K�1
1 ðf1 � BT

1kÞ ð4Þ

uiþ1 ¼ Kþiþ1ðf iþ1 � BT
iþ1kÞ þ Riþ1a ð5Þ

where Kþiþ1 is a pseudo-inverse of Ki+1, Ri+1 represents the rigid body
modes of subdomain Xi+1 which is a basis of the null space of Ki+1,
and a is a linear combination of its modes. There are two
approaches to handle the the rigid body modes R: factorization
and geometrical approach [11,12]. We introduce a computation
through a factorization because that is more liberal for any prob-
lems and simple to understand than geometrical method.

Using factorization, the pseudo-inverse matrix Kþiþ1 can be
simply calculated as follows

Kþiþ1 ¼
Krr

iþ1 0
0 0

� �
ð6Þ

where Krr
iþ1 is a factorized full rank matrix, and rank is denoted by

superscript r. The basis of the null space Ri+1 is defined as

Riþ1 ¼
�½Krr

iþ1�
�1Krn

iþ1

Inn

" #
ð7Þ

where a nullity of Ki+1 is denoted by superscript n, and Krn
iþ1 is a fac-

torized matrix at corresponding rows of Krr
iþ1. Inn is an identity

matrix.
Mathematically the possible singularity of the matrix Ki+1

requires a necessary condition for solvability written as

RT
iþ1ðf iþ1 � BT

iþ1kÞ ¼ 0 ð8Þ

which gives us an additional equation in order to solve k, a, and u.
Substituting Eq. (5) into the compatibility Eq. (3) and combining
those with Eq. (8), we can obtain a mixed equation as follows

FI �G
�GT 0

� �
k

a

� �
¼

d
e

� �
ð9Þ

where

FI ¼ B1K�1
1 BT

1 þ
XN

i¼1

Biþ1Kþiþ1BT
iþ1 ð10Þ

G ¼ ½B1R1Biþ1Riþ1 . . . BNRN� ð11Þ

d ¼ B1K�1
1 f1 þ

XN

i¼1

Biþ1Kþiþ1f iþ1 ð12Þ

e ¼ �½RT
1f1RT

iþ1f iþ1 . . . RT
NfN � ð13Þ

fN

u1=0

Fig. 1. Two decomposed subdomains X1, Xi+1 to XN of domain X.
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