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a b s t r a c t

Thermal interaction of fluids and solids, or conjugate heat transfer (CHT), is encountered in many engi-
neering applications. Noting that time-accurate computations of transient CHT problems can be compu-
tationally expensive, we consider the use of high order implicit time integration schemes which have the
potential to be computationally more efficient relative to the commonly used second order implicit
schemes. For thermally weak couplings, we present a loosely-coupled solution algorithm where high
order implicit–explicit (IMEX) Runge–Kutta schemes are employed for time integration. The IMEX
schemes consist of the explicit first-stage singly diagonally implicit Runge–Kutta (ESDIRK) schemes,
for advancing the solution in time within each separate fluid and solid subdomain, and the explicit Run-
ge–Kutta (ERK) schemes, for explicit integration of part of the coupling terms. By considering a numerical
example (an unsteady conjugate natural convection in an enclosure), temporal order preservation of the
coupling algorithm (without subiterating) is demonstrated. In addition, the stability of the loosely-cou-
pled algorithm is investigated numerically for the CHT test-case; when the ratio of the thermal effusiv-
ities of the fluid and solid subdomains is much smaller than unity, using large Fourier numbers of the
subdomains is possible, indicating that time-step size is restricted by accuracy rather than stability. Fur-
thermore, the (computational) work-(temporal) precision character of several time integration schemes
in solving the CHT test-case is compared over a range of accuracy requirements; for time-accurate solu-
tions, the fourth and fifth order IMEX schemes are 1.5 times more efficient than Crank–Nicolson and 2.7
times more efficient than BDF2. The computational gain is higher for smaller tolerances.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thermal interaction of flows and structures, also referred to as
conjugate heat transfer, arises in many engineering applications.
Examples are: the thermal interaction among various phases and
materials in the mold region of a continuous casting process, the
thermal interaction between the fluid in a U-tube pipe with the
surrounding soil in a geothermal heat exchanger system, the
cooling of gas turbine blades, and the cooling of electronic chips.
In order to obtain a better understanding of the physics of the
coupled problem and hence to increase the efficiency and/or safety
of designs, numerical simulations serve as a viable tool.

The monolithic and partitioned approaches are two commonly
used methods for solving the thermal coupling of flows and struc-
tures. In the monolithic method, the solution in the global domain
is obtained by solving the governing equations within the sub-
domains as well as the interface equations simultaneously [1,2].
The monolithic method requires the production of a single code

specifically tailored for conjugate heat transfer problems [3]. In
the partitioned method on the other hand, a separate physics sol-
ver is associated with each subdomain [4]. The solution in the sub-
domains are coupled at the interface through a set of transmission
conditions, and a coupling algorithm is required for the transfer of
data between the subdomains. By solving the coupled problem in a
partitioned manner, one can take advantage of the already existing
efficient and highly optimized separate fluid and solid codes.

In engineering applications, typically an implicit time integra-
tion is preferred over an explicit one in order to circumvent time
step restrictions due to probable stiffness in the problem. Stiffness
in a system can, for example, arise due to the nature of the govern-
ing equations or due to the generated grid (such as clustering of
nodes near an area of interest [5]). Performing time-accurate com-
putations of transient CHT problems can be computationally
demanding, in particular when low order time integration schemes
are used. The obtained solution can suffer from low levels of tem-
poral accuracy, and in order to increase the accuracy of the solu-
tion, smaller time steps must be taken. This results in an increase
in the computational cost of solving the coupled problem. As a
potential solution, we consider the use of high order implicit time
integration schemes for advancing the coupled problem in time.
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Computational efficiency of the high order time integration
schemes relative to second order backward difference scheme
(BDF2) has been demonstrated in Bijl et al. [6] for fluid flow com-
putations and in van Zuijlen and Bijl [7] for the partitioned simula-
tion of the mechanical coupling of flows and structures. Using high
order spatial discretization in combination with high order tempo-
ral discretization can also contribute to the overall efficiency of the
method. In this paper however, following the method of lines ap-
proach, we will assume a spatial discretization, and focus on time
integration.

When the coupled problem is solved monolithically, using an
implicit time integration scheme, the interface equations are re-
solved implicitly. However, in the partitioned method, some or
all of the interface terms are treated explicitly, depending on the
arrangement with which the two coupled domains are solved (par-
allel (Block Jacobi) or sequential (Block Gauss–Seidel)). Therefore,
in the partitioned approach, the interface equations are treated
in a segregated manner where one of the interface equations is ap-
plied as a boundary condition for one subdomain and the other as
boundary condition for the second subdomain [4]. If at each time
step (or stage of an implicit Runge–Kutta scheme), a single inter-
face iteration (subiteration or fixed-point iteration) [4,8] is per-
formed, the partitioned algorithm is referred to as loosely-
coupled, otherwise it is referred to as strongly-coupled. This paper
focuses on loosely-coupled solution algorithms; see [4,9] for exam-
ples on strongly coupled algorithms, and [3,4,10–12] for examples
on partitioned algorithms with explicit time integration.

Loosely-coupled solution algorithms can provide an efficient
way of solving time-accurate CHT problems relative to the mono-
lithic approach when the thermal coupling between the subdo-
mains is weak (when the ratio of the thermal effusivities
(e ¼

ffiffiffiffiffiffiffiffiffiffi
kqcp

p
) of the coupled domains is much smaller than unity)

[13]. To the authors’ knowledge, loosely-coupled solution algo-
rithms with up to second order implicit time integration schemes
have been reported in the literature (see [3,9,13,14]). In this paper,
a loosely-coupled solution algorithm is presented in which a family
of high order implicit–explicit (IMEX) Runge–Kutta schemes are
used for time integration. The IMEX schemes consist of the explicit
first-stage singly diagonally implicit Runge–Kutta (ESDIRK)
schemes, which are used for advancing the solution in time within
each separate fluid and solid subdomain, and equal order and num-
ber of stages explicit Runge–Kutta (ERK) schemes for explicit inte-
gration of part of the coupling terms. The IMEX schemes
considered here were originally developed for solving time-accu-
rate convection–diffusion-reaction (CDR) problems [15] and later
employed for the loosely coupled simulation of the mechanical
coupling of flows and structures [7].

The solution obtained using a loosely-coupled algorithm, con-
tains an additional source of error compared to the monolithic
solution, denoted as the partitioning error. As a result, the tempo-
ral accuracy and stability of the coupling algorithm is influenced by
the partitioning error. Therefore, in designing loosely-coupled
solution algorithms, a number of issues needs to be considered.
One, whether the design order of the time integration scheme is
preserved without subiterating. Second, what are the stability prop-
erties of the algorithm; for practical computations, it is preferred
that Dt is restricted by accuracy rather than stability. These two is-
sues are investigated numerically by considering a CHT problem
(unsteady conjugate natural convection in an enclosure).

While in the loosely coupled multi-stage IMEX schemes a single
interface iteration is performed at each (implicit) stage, in the
second order loosely coupled Crank–Nicolson scheme [13], only
one is performed per time-step. However, for the same time-step,
the high order IMEX schemes generally provide temporally more
accurate solutions. For the CHT test-case, the (computational)
work-(temporal) precision character of the high order IMEX and

second order Crank–Nicolson and BDF2 schemes is compared over
a range of accuracy requirements. We investigate whether the high
order IMEX schemes can compete with the second order schemes
for a reasonable portion of the work-precision spectrum, i.e.
whether the additional work per time-step of the IMEX schemes
is compensated by the gain in temporal accuracy.

In what follows, first the equations governing conjugate heat
transfer are discussed. After a brief overview of the ESDIRK and
IMEX time integration schemes, the details of the loosely coupled
solution algorithm are presented. Next, numerical examples are
considered, in order to demonstrate the applicability of the algo-
rithm, to investigate the temporal order preservation and stability
of the algorithm, and finally its computational efficiency relative to
the second order time integration schemes.

2. Governing equations

In the conjugate heat transfer problem considered here, the
fluid domain is modeled using the Boussinesq approximation of
the Navier–Stokes system which in primitive variables is given by:

r � u ¼ 0; ð1Þ

@u
@t
¼ �ðu � rÞuþ mr2u�rp� bgjðTf � Tref Þ; ð2Þ

@Tf

@t
¼ �ðu � rÞTf þ

1
ðqcpÞf

r � ðkfrTf Þ; ð3Þ

where u is the velocity vector, p is the kinematic pressure, m the
kinematic viscosity, Tf the temperature, kf the thermal conductivity,
cp;f the heat capacity, qf the density, b the compressibility factor of
the fluid, g the acceleration due to gravity, and j is a vector indicat-
ing the direction in which the gravity acts.

The solid domain is modeled using unsteady heat conduction:

@Ts

@t
¼ 1
ðqcpÞs

r � ðksrTsÞ: ð4Þ

The governing equations are accompanied by appropriate initial
and boundary conditions. For a well-posed problem, the continuity
of the temperature and heat flux are imposed at the common inter-
face (I) of the domains:

Tf ðI ; tÞ ¼ TsðI ; tÞ; ð5Þ
qsðI ; tÞ ¼ qf ðI ; tÞ; ð6Þ

where qmðI ; tÞ ¼ �kmrTm � n with m the index of the subdomain
and n the outward normal of the interface.

To identify the governing parameters in the conjugate heat
transfer problem described by (1)–(6), the equations are non-
dimensionalized using appropriate non-dimensional quantities
(see [13]). Based on the dimensionless form of the equations, it is
observed that the Prandtl number (Pr ¼ m

af
), the Rayleigh number

Ra ¼ gbðTH�TC ÞL3
ref

maf

� �
, the ratio of the thermal conductivities (ks

kf
), and

the ratio of thermal diffusivities of the domains as
af

� �
are the gov-

erning parameters of the problem.

3. Model problem

In this section, the description of a one dimensional model
problem is presented which will be used to discuss the details of
the loosely-coupled solution algorithm. The model problem has
been commonly used in the literature (for example [3,4,10]) to
analyze stability of numerical algorithms for thermal coupling of
domains. The model problem consists of thermal coupling of two
domains X1 ¼ ½�L1;0� and X2 ¼ ½0; L2�, with their common
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