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a b s t r a c t

We present a dynamic finite element formulation for dielectric elastomers that significantly alleviates the 
problem of volumetric locking that occurs due to the incompressible nature of the elastomers. We accom- 
plish this by modifying the Q1P0 formulation of Simo et al. [1], and adapting it to the electromechanical 
coupling that occurs in dielectric elastomers. We demonstrate that volumetr ic locking has a significant
impact on the critical electric fields that are necessary to induce electromechanical instabilities such as
creasing and cratering in dielectric elastomers, and that the locking effects are most severe in problems 
related to recent experiments that involve significant constraints upon the deformation of the elastomers.
We then compare the results using the new Q1P0 formulation to that obtained using standard 8-node 
linear and 27-node quadratic hexahedral elements to demonstrate the capability of the proposed 
approach. Finally, direct comparison to the recent experimental work on the creasing instability on
dielectric polymer surface by Wang et al. [2] is presented. The present formulation demonstrates good 
agreement to experiment for not only the critical electric field for the onset of the creasing ins tability,
but also the experimen tally observ ed average spacing between the creases.

� 2013 Elsevier B.V. All rights reserved.

1. Introductio n

Dielectric elastomers (DEs) are a class of soft, active materials 
that have attracted significant attention in recent years [3–8]. They 
have been found to provide excellent overall performance in actu- 
ation-based applications, including high specific elastic energy 
density, good efficiency and high speed of response. Furthermore,
DEs are typically lightweight, flexible and inexpensive materials 
which makes them ideal candidates for high performance, low cost 
applications where fabricatio n of the DEs into a wide range of
shapes and structures can easily be realized [9].

While DEs have been found to exhibit good performance with 
respect to a variety of actuation-rel evant propertie s, including 
strain, actuation pressure , efficiency, response speed, and density 
[10], the key source of the technologic al excitement surrounding 
DEs stems from the fact that, if sandwiched between two compli- 
ant electrodes that apply voltage to the elastomer, the DE can ex- 
hibit both significant thinning and in-plane expansion. This 
unique large deformat ion-based actuation capability has led to
many interesting applicati ons for DEs, including the potential to
harvest energy from sources as diverse as human muscle motion 
and ocean waves, medical devices, and perhaps most importantly ,

artificial muscles [3,4,7]. Furthermore, recent experimental studies 
by Wang et al. [11] and Shivapooja et al. [12] have exploited the 
large deformation and surface instabilities studied in DEs in the 
present work to generate dynamic surface patterns, and antifoul- 
ing coatings, respectively. In both of these cases, it is the large 
deformat ion and instability of the polymer that enables the novel 
applicati ons, which may not be achieved with traditional electro- 
active materials. In addition, the voltage required to deform the 
polymer scales with the thickness of the polymer, which therefore 
may not be very high for thin polymer films.

Due to these and other potential ly groundbreak ing applicati ons,
starting about 15 years ago with the seminal work of Pelrine et al.
[10,13], there have been many experimental studies to elucidate 
the electrom echanical behavior and properties of DEs [14–25].

Along with the experimental studies, many analytic theories 
that explain various aspects of the electromechan ical behavior 
and properties of DEs have recently been develope d [26–
33,20,21 ]. Many of these theories have as their basis the original 
works in electro-elastici ty, for example that of Maugin [34]. Fur- 
thermore , there have recently appeared a range of analytical stud- 
ies on the stability and instability phenomena both in DEs [35–38],
and other magneto -elastic materials [39].

While these analytic theories have led to many key insights 
regarding the electrom echanical behavior and instabilities of DEs,
it has been difficult to use these analytic theories to study the 
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inhomogene ous deformat ion and failure mechanisms, i.e.
wrinkling [19,21], electromechan ical snap-throug h instability 
[13], and more recently creasing and cratering instabilities 
[2,40,11] that have been observed experimentally.

Because of this, several papers have recently appeared propos- 
ing finite element (FEM) formulations for DEs [41–44,33,45–49] .
The approaches of Zhao and Suo [41] and O’Brien et al. [44] are
similar in that neither formulat ion accounted for the full electro- 
mechanical coupling, i.e. electrostatic effects were accounted for 
via inclusion in the mechanical free energy, while no electrostatic 
governing equation was solved. The approach es of Vu et al. [42]
and Zhou et al. [43] are similar in that both utilized finite deforma- 
tion, fully coupled electromechan ical equations that were solved 
neglecting inertia. While the work of Vu et al. [42] did not consider 
electromechan ical instabilities, such effects were considered by
Zhou et al. [43], though difficulties in tracking the entire history 
of the electromechan ical instabilit y were found due to the static 
formulation . Wissler and Mazza [45] solved the coupled electro- 
mechanical problem using Poisson’s equation for the electrost atics,
though again, electromechan ical instabilit ies were not considered.
Recently, Park and Nguyen [46] and also Khan et al. [47] proposed
viscoelastic FEM models for DEs.

Overall, there exist two major unresolved issues in the existing 
FEM modeling literature. First, none of the previous approaches 
have demonstrat ed the ability to capture inhomogeneous deforma- 
tion and failure modes (creasing, cratering, snap-through, wrin- 
kling) that result from the electromechan ical instability within a
large deformation framework. Second, none of the previous ap- 
proaches has been able to resolve the electromechan ical instabili- 
ties while ensuring that the incompres sible nature of the material 
response, and thus avoidance of volumetric locking effects, is ac- 
counted for.

The first issue was resolved through a recent FEM formulation 
proposed by Park et al. [50], who utilized inertia to capture electro- 
mechanical instabilit ies that arise through the constituti ve model 
and field equations of Suo et al. [26]. Inertia is important for this 
approach as quasistatic FEM techniques, without special tech- 
niques such as the arclength method, fail once the loss of ellipticity 
(corresponding to softening in the voltage-cha rge curve for DEs)
occurs. In contrast, the use of inertia enables the simulation to con- 
tinue into the electromechan ical softening regime, as demon- 
strated by Park et al. [50] and Park and Nguyen [46]. The role of
inertia in electrom echanically coupled problems is thus exactly 
analogous to its role in single field mechanical strain softening 
problems [51]. Using the dynamic formulation , they were able to
demonstrat e the basic electrom echanical instabilit ies that occur 
in DEs under electrost atic loading, i.e. snap-throug h instabilities,
surface wrinkling and creasing.

However , the work of Park et al. [50] did not resolve the second 
issue, i.e. that of volumetric locking that arises due to the incom- 
pressible material response of the DEs. As discussed by Belytschko 
et al. [52], FEM modeling of volumetric locking has a lengthy his- 
tory, though the salient point is that the vast majority of the liter- 
ature has been targeted towards single-field (i.e. mechanical-onl y)
problems. In the present work, we extend one such approach to
alleviating volumetric locking, the classic three-field Hu–Washizu
Q1P0 formulation of Simo et al. [1], to problems involving coupling 
of the mechanical and electrostatic domains. We note that while 
the viscoelastic formulation of Park and Nguyen [46] also utilized 
the Q1P0 formulation of Simo et al. [1] to alleviate volumetr ic lock- 
ing, an explicit comparison to experime ntal results to demonstrat e
the necessity and accuracy of the electromechan ical Q1P0 formula- 
tion was not performed. Because of this, we also demonstrat e the 
capability of the proposed approach in accurately capturing the 
experimental ly observed critical electric fields needed to induce 
electromechan ical instabilities, as well as the experimental ly

observed spacing by Wang et al. [2]. Comparisons are also made 
to standard three-dimens ional linear and quadratic hexahedr al
FEs to demonstrat e the utility of a specializ ed formulation to alle- 
viate volumetric locking effects.

2. Backgrou nd: nonlinear electromechani cal field theory 

The numerical results we present in this work are obtained 
using a FEM discretizatio n of the electromechan ical field theory re- 
cently proposed by Suo et al.[26], and recently reviewed by Suo 
[27]. In this field theory, at mechanical equilibrium , the nominal 
stress siJ satisfies the following (weak) equation:Z
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where ni is an arbitrary vector test function, Bi is the body force per 
unit reference volume V ;q is the mass density of the mater ial and Ti

is the force per unit area that is applied on the surface A in the ref- 
erence configuration.

For the electrostatic problem, the nominal electric displacemen t
~DI satisfies the following (weak) equation:
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where g is an arbitrary scalar test function, q is the volumetric 
charge density and x is the surface charge density , both with re- 
spect to the reference configuration.

We make several relevant comments with regards to the field
equation s in (1) and (2). First, if the vector test function ni is chosen 
to represent a virtual displacement dui, the mechanical weak form 
in (1) represents the well-known statement of virtual mechanical 
work, where the nominal stress SiJ is work conjugate to the gradi- 
ent of virtual displacemen t dui. Second, if the electrical test func- 
tion g in (2) is chosen to be the virtual potential d/, then the 
electrost atic weak form in (2) can also be interpreted within a vir- 
tual work context, where the nominal electric displacemen t ~DI is
work conjugate to the gradient of virtual potential d/. Third, the 
strong form of the mechanical weak form in (1) is the well-known 
momentum equation , while the strong form of the electrost atic 
weak form in (2) is the well-known Gauss’s law.

Because we are solving an electrom echanical boundary value 
problem, it is relevant to discuss the details of the boundary condi- 
tions for each field equation. Specifically, the electromechan ical 
boundary conditions are in fact the standard boundary conditions 
for each of the single domain problems. Specifically, these are ap- 
plied tractions and displacements for the mechanical domain and 
applied voltages and charges for the electrostatic domain. No
non-stand ard boundary conditions are needed in the present 
formulat ion.

We also note that the weak formulation s in (1) and (2) do not 
account for the possible effect of the surrounding free space. How- 
ever, both for the problem we analyze in the current work, as well 
as the vast majority of experime ntal DE configurations, the DE is
actuated by coating it with electrodes and the effect of electric 
fields around the edges of the electrode s is negligible. For other sit- 
uations in which an air gap exists between one electrode and the 
polymer, it is likely that the electric field in the air will have a sig- 
nificant effect on the instability mechanism [53].

We note that the theory of Suo et al. [26] is not the only nonlin- 
ear electromechan ical field theory that exists; earlier works by
Dorfman n and Ogden [29,30] and McMeeking and Landis [31] also
proposed nonlinear electromechan ical field theories for deform- 
able elastomeric materials . For this work, we utilize the governing 
nonlinear electromechan ical field equation s of Suo et al. [26] for
the following five reasons: (1) The field variables (mechanical
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