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a b s t r a c t

When considering problems of dimensions close to the characteristic length of the material, the size
effects can not be neglected and the classical (so-called first-order) multiscale computational homogeni-
zation scheme (FMCH) looses accuracy, motivating the use of a second-order multiscale computational
homogenization (SMCH) scheme. This second-order scheme uses the classical continuum at the micro-
scale while considering a second-order continuum at the macro-scale. Although the theoretical back-
ground of the second-order continuum is increasing, the implementation into a finite element code is
not straightforward because of the lack of high-order continuity of the shape functions. In this work,
we propose a SMCH scheme relying on the discontinuous Galerkin (DG) method at the macro-scale,
which simplifies the implementation of the method. Indeed, the DG method is a generalization of weak
formulations allowing for inter-element discontinuities either at the C0 level or at the C1 level, and it can
thus be used to constrain weakly the C1 continuity at the macro-scale. The C0 continuity can be either
weakly constrained by using the DG method or strongly constrained by using usual C0 displacement-
based finite elements. Therefore, two formulations can be used at the macro-scale: (i) the full-discontin-
uous Galerkin formulation (FDG) with weak C0 and C1 continuity enforcements, and (ii) the enriched dis-
continuous Galerkin formulation (EDG) with high-order term enrichment into the conventional C0 finite
element framework. The micro-problem is formulated in terms of standard equilibrium and periodic
boundary conditions. A parallel implementation in three dimensions for non-linear finite deformation
problems is developed, showing that the proposed method can be integrated into conventional finite ele-
ment codes in a straightforward and efficient way.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the numerical simulation of engineering applica-
tions with heterogeneous materials poses many mathematical
and computational challenges. In theory, such problems can be di-
rectly solved by using a standard finite element procedure. How-
ever, it requires the mesh size h to be smaller than the
heterogeneities size, i.e. � : h < �, and if � is small, the simulation
may not be performed due to the enormous number of the degrees
of freedom. An effective remedy, which is known as the computa-
tional homogenization, has been developed to link up straightfor-
wardly the responses of the large scale problems, also called the
macroscopic problems, to the behavior of the smaller scale prob-
lems, also called the microscopic problems, where the presence
of heterogeneities is considered. The basic ideas of the computa-
tional homogenization approach have been presented in papers
by Michel et al. [1], Terada et al. [2], Miehe et al. [3,4], Kouznetsova

et al. [5–7], Kaczmarczyk et al. [8], Peric et al. [9], Geers et al. [10]
and references therein, as a non-exhaustive list. By this technique,
two boundary value problems are defined at two separate scales,
one is defined at the microscopic scale and one is defined at the
macroscopic scale. Such an approach does not require the macro-
scopic constitutive response to be known a priori and enables
the incorporation of both geometrical and material non-linearities
[11]. The macroscopic material law is extracted from the analysis
of the microscopic boundary value problem (BVP), which is defined
by a representative volume element (RVE) with a suitable bound-
ary condition related to the macroscopic quantities. This procedure
does not lead to a closed-form of the macroscopic constitutive law,
but the stress–strain relation is always available through the reso-
lution of the BVPs.

The classical multiscale computational homogenization ap-
proach (so-called the first order multiscale computational
homogenization approach – FMCH) provides a versatile tool to
model the micro–macro transitions and is based on the standard
continuum theory [1–5,9,10]. For a given macroscopic deformation
gradient tensor, the stress and the associated material tangent are
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estimated from the response of the micro-structure, see Fig. 1. Sim-
ilar first order computational homogenization schemes have also
been developed for material layers [12]. Although the first-order
scheme accounts for the volume fraction and for the microscopic
morphology, the influence of the absolute size of the constituents
at the micro-scale is not considered. Indeed, according to the local
action principle, the separation of scales must be satisfied in order
to capture the equivalent homogeneous state by analyzing the
microscopic problem. However, this condition is sometimes vio-
lated when the macroscopic length scale and the microscopic
length scale gets closer. In this case, the classical FMCH procedure
would lead to a solution which is not physical because of the vio-
lation of the local action principle. Therefore the classical homog-
enization procedure cannot capture the high gradient at the RVE
level and the size effects cannot be captured in the regions of high
deformation gradients [6].

To be able to cover the localization and size effect problems at a
given resolution scale, many authors have proposed to use general-
ized continuum formulations (e.g. Cosserat, couple-stress, strain-
gradient, non-local, micromorphic formulations), see [13–19]
amongst others. In the generalized continuum theory, the length
scale is introduced into the material constitutive law and the
method is able to capture the size effects. For the multiscale prob-
lems, the generalized continuum can potentially be used at both
the macroscopic and the microscopic scales. Recent extensions of
the FMCH scheme to the second-order continuum, as for the so-
called second-order multiscale computational homogenization
(SMCH) [6–8], provide a systematic way to couple the strain-gradi-
ent continuum at the macro-scale with the classical continuum at
the micro-scale, see Fig. 1. In this scheme, both the deformation
gradient and its gradient are used at each macroscopic material
point to define the microscopic boundary condition. The macro-
scopic stress and higher-order stress are computed by using the
generalized version of the Hill–Mandel macro-homogeneity
condition.

To solve the strain-gradient problem at the macro-scale, the
addition of the high-order terms in the generalized internal virtual
work leads to many complications in the numerical treatment of
the finite element framework. With the conventional
displacement-based finite element method, this requires not only
the continuity of the displacement field but also the continuity of
its first derivatives. In other words, at least the C1 continuity of
the interpolation shape functions must be used. When solving
the strain-gradient problems, the C1 finite elements have been suc-
cessfully developed, see [20,21]. Alternative approaches consider a

mixed formulation [22,23] or the micromorphic formulation [19],
from which the strain gradient formulation can be recovered. The
strategy of introducing another unknown field beside the unknown
displacement field in the C1 element, as in the mixed formulation
and in the micromorphic formulation, raises the number of degrees
of freedom. Therefore, the use of the C0 conventional continuous
elements is favored. Another effective approach is the continu-
ous–discontinuous Galerkin (C0/DG) method [24,25]. This ap-
proach, which uses C0 continuous interpolation functions, is
formulated in terms of the displacement unknowns only and
weakly enforces the continuity of the higher-order derivatives at
the inter-element boundaries by using the DG formulation.
However, in the mentioned works, only linear elastic materials
are considered. In this paper a one-field DG formulation of the
strain-gradient theory for finite strains is required.

As a generalization of weak formulations, DG methods allow for
the discontinuities of the problem unknowns in the interior of the
domain, see [26,27] and their references. The domain is divided
into sub-domains on which the integration by parts is applied,
leading to boundary integral terms on the subdomain interfaces.
The role of these terms is to satisfy the consistency and to enforce
weakly the continuity of the problem unknowns. When consider-
ing problems involving high-order derivatives, the DG method
can also be seen as a way of imposing weakly the high-order con-
tinuity. This advantage has been exploited in the mechanics of
beams and plates [24,28], of shells [29], and of Mindlin’s theory
[24,25]. When using DG methods, the discontinuities can be
related to the unknown fields and their derivatives or to their
derivatives only. The DG methods have also been developed for
strain-gradient damage [30] and for gradient plasticity [31,32], in
which case the discontinuity of the equivalent strain across
inter-element interfaces is weakly enforced. In mathematical
analyzes, the DG methods were also used to impose weakly the
C0 continuity of the displacement field [33,34] at the macro-scale
when solving, multiscale elliptic problems.

The purpose of this work is to establish a second-order multi-
scale computational homogenization for finite deformations based
on the DG formulation at the macro-scale, while the micro-prob-
lem is formulated in terms of standard equilibrium and boundary
conditions. The DG method is used to constrain weakly the C1 con-
tinuity by inter-element integrals. The C0 continuity can be either
weakly imposed by the DG formulation or strongly constrained
using the conventional C0 displacement-based finite element. Thus
two formulations can be used:

� The full DG formulation (FDG), which constrains weakly the C0

and C1 continuities, and
� The enriched DG formulation (EDG) with high-order term

enrichments into the conventional C0 finite element framework.

Considering a DG formulation allows traditional finite element to be
considered although the strain-gradient continuum is used. Fur-
thermore, as the shape functions remain continuous with the EDG
formulation, the number of degrees of freedom in this case is the
same as for conventional C0 finite elements. On the contrary, the
FDG method suffers from an explosion in the number of degrees
of freedom as the shape functions are now discontinuous. Neverthe-
less the FDG formulation is advantageous in case of parallel imple-
mentations using face-based ghost elements [35,36]. 3-dimensional
implementations of both the EDG and FDG methods are presented
in this paper, showing that they can be integrated into conventional
parallel finite element codes without significant effort. Non-linear
multiscale applications are then presented to demonstrate the effi-
ciency of the method.

The organization of the paper is as follows. In Section 2, the
problem statement of the SMCH is recalled. The resolution of the

Fig. 1. Illustration of first-order and second-order multiscale computational
homogenization schemes. The deformation gradient �F and the first-order stress �P
are used in the first-order scheme while the gradient of deformation gradient
�G ¼ �F � $0 and the higher-order stress �Q are added to capture the high-order
effects in the second-order scheme.
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