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a b s t r a c t

We propose two fully discrete mixed and Galerkin finite element approximations to a system of equa-
tions describing the slow flow of a slightly compressible single phase fluid in a viscoelastic porous med-
ium. One of our schemes is the natural one for the backward Euler time discretization but, due to the
viscoelasticity, seems to be stable only for small enough time steps. The other scheme contains a lagged
term in the viscous stress and pressure evolution equations and this is enough to prove unconditional
stability. For this lagged scheme we prove an optimal order a priori error estimate under ideal regularity
assumptions and demonstrate the convergence rates by using a model problem with a manufactured
solution. The model and numerical scheme that we present are a natural extension to ‘poroviscoelasticity’
of the poroelasticity equations and scheme studied by Philips and Wheeler in (for example) [Philip Joseph
Philips, Mary F.Wheeler, Comput. Geosci. 11 (2007) 145–158] although — importantly — their algorithms
and codes would need only minor modifications in order to include the viscous effects. The equations and
algorithms presented here have application to oil reservoir simulations and also to the condition of hydro-
cephalus — ‘water on the brain’. An illustrative example is given demonstrating that even small viscoelas-
tic effects can produce noticeable differences in long-time response. To the best of our knowledge this is
the first time a mixed and Galerkin scheme has been analysed and implemented for viscoelastic porous
media.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this article we consider an extension to the equations of
poroelasticity by modelling the flow of a slightly compressible sin-
gle phase fluid in a viscoelastic porous medium. The constitutive
equations therefore allow for the presence of viscoelastic relaxa-
tion effects in the porous media (but not the fluid). Fully discrete
numerical schemes are derived based on a lagged and non-lagged
backward Euler time stepping method applied to a mixed and
Galerkin finite element spatial discretization. We show that the
lagged scheme is unconditionally stable and give an optimal a pri-
ori error bound for it. Furthermore, this scheme is practical and
useful in the sense that it can be easily implemented in existing
poroelasticity software because the coupling between the viscous
stresses and pressures and the elasticity and flow equations is

‘lagged’ by one time step. The required additional coding therefore
takes the form of extra ‘right hand side loads’ together with some
updating subroutines for the viscoelastic internal variables, but the
solver and assembly engines remain intact. This idea of lagging has
been used before for nonlinearly viscoelastic diffusion problems in
[3,24] but, of course, is not new. Lagging in numerical schemes is
discussed more widely by Lowrie in [14].

This work was originally motivated by geomechanics applica-
tions but during its development we have become aware of its
potential relevance to the modelling of cerebrospinal fluid flow
and its relation to the condition of hydrocephalus. To the best of
our knowledge this is the first time a mixed and Galerkin scheme
has been analysed and implemented for viscoelastic porous media.

1.1. Geomechanics

Reservoir simulators are built by computationally solving par-
tial differential equations that employ Darcy’s law to approximate
the flow through porous media. The oil reservoirs can be anywhere
between 300m to 10km below the earth’s surface in the litho-
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sphere. At the simplest level of modelling the lithosphere (the por-
ous medium) can be considered as pefectly rigid but, in practice, it
is more accurately modelled as being either elastic or viscoelastic
as in, for example, [2, Chap. 2, 18,6,31]. The point made by Lakes
in [12, Section 7.4.1] is that although at room temperatures rock
is not in general a ‘lossy’ medium, at the elevated temperatures
in the Earth’s interior the viscoelastic loss tangents can be signifi-
cant. Also in [12, Section 8.3.1], an explanation of viscoelastic
behaviour of porous media even at cooler temperatures is given
based on the time and frequency dependent drag forces from the
stress-induced fluid flow.

Recently Philips and Wheeler in [20–22] and then Wheeler and
Gai in [32] described, discretized and analysed a poroelasticity mod-
el in which the porous rock was allowed to behave linear elastically
(see for example [7,5]). Rohan et al. in [25] then followed by using
homogenisation techniques to extend that poroelasticity model by
including linear viscoelastic effects. Under the assumption of slow
fluid flow, that model — considered below — is able to simulate
relaxation and creep behaviour, as well capture damping and fre-
quency dependent behaviour (see the interesting article [4] for an
idea of the importance of viscoelastic damping in geology).

1.2. Cerebrospinal fluid (CSF) flow

Our original connection to this potential application came
through exposure to the work that now appears in [9]. Here the
flow of CSF through the ventricles of an elastic-sponge-like brain
is modelled using essentially the same equations of poroelasticity
as touched on above. The work in [9] follows on from the develop-
ments presented in [28,34] and is related to the studies in
[26,27,33]. The last authors note that brain tissue is in general vis-
coelastic as described in, for example, [30,17,29,19], [12, Sec-
tion 7.5.7] and this provides the connection to the work
presented in [25] and below.

We should also mention that the model in [9] allows for nonlin-
ear compression-dependent effects, and also that [35] extends the
model to finite strain hyperelasticity.

1.3. Poro-visco-elasticity

Although the idea of viscoelastic porous media modelling and
numerics is not new (see also [8] and the comprehensive [15] as
well as the those above) we believe that this paper is the first to
present it in a mixed and Galerkin framework.

The viscoelasticity of the porous media is introduced into the poro-
elasticity model by using a stress relaxation ODE (ordinary differential
equation) for an ‘internal stress variable’ rather than using the equiva-
lent (when a Prony series relaxation function is assumed) notion of a
‘hereditary integral’. This extension of Hooke’s law to linear viscoelas-
ticity is classical and very well documented in the literature (see, for
example, [11,10]). What is not so obvious is how the viscoelasticity
of the skeleton influences the flow equation for pressure. To reveal this
mechanism Rohan et al. in [25] used homogenization arguments to de-
rive the governing equations that appear below.

Although for the reasons touched on earlier this viscoelastic
porous media model is useful in its own right, in another respect
it serves (at least mathematically) as a starting point for adding
other forms of internal variable equations. These can represent
more complicated behaviour such as, for example, plasticity as for-
mulated in [1]. We hope to return to these extensions at a later
time as well as to other important topics such as the thermoporo-
elasticity model described in [13].

We now move on to describe the model with which we shall be
concerned. This will be followed in Section 3 with the numerical
scheme; in Section 4 with a derivation of error bounds; in Section 5
with an illustration of these bounds and in Section 6 with a more

practically-oriented demonstration of the model. We finish in Sec-
tion 7 with some concluding remarks.

In isotropic linear elasticity theory in Rd the symmetric stress
tensor, r ¼ ðrijÞdi;j¼1 is related to the strain tensor, e ¼ ðeijÞdi;j¼1

through the constitutive law,

r ¼ De or rij ¼ kekkðuÞdij þ 2leijðuÞ;

where eijðuÞ :¼ 1
2 ðui;j þ uj;iÞ and with u ¼ ðuiÞdi¼1 the displacement

and k;l the Lamé constants. Unless explicitly stated otherwise
the summation convention is in force throughout and we usually
suppress x dependence to enhance readability. Note that D is posi-
tive definite on the symmetric second-order tensors and also that
we are writing tensors of order one (‘vectors’) in bold and tensors
of order two or four in bold underline.

The simplest way of including viscoelastic effects such as stress
relaxation and creep is to introduce a history functional into the con-
stitutive law (see e.g. [10,11]). For this we introduce the stress relax-
ation function uðtÞ ¼ u0 þu1e�t=s, for constants u0 > 0;u1 P 0 and
s > 0 such that uð0Þ ¼ 1, and write the stress as,

r ¼ DeðuðtÞÞ þ
Z t

0
_uðt � sÞDeðuðsÞÞds;

where, here and below, the overdot signifies partial differentiation
with respect to the (time) argument. It is a fundamental observation
that with w0 ¼ 1=u0 and w1 ¼ u1=u0 this relationship can be
inverted to give,

DeðuðtÞÞ ¼ rðtÞ þ
Z t

0

_wðt � sÞrðtÞds;

where wðtÞ ¼ w0 � w1e�u0t=s is the creep function. Furthermore, not-
ing that _uðt � sÞ ¼ �s�1u1 expð�ðt � sÞ=sÞ we define the internal
stress variable

r�ðtÞ :¼
Z t

0

u1

s
e�ðt�sÞ=sDeðuðsÞÞds ð1Þ

and get

s _r� þ r� ¼ u1DeðuÞ subject to r�ð0Þ ¼ 0:

With this we can write rðtÞ ¼ DeðuðtÞÞ � r�ðtÞ and thereby remove
the explicit appearance of the displacement history.

Now letting p denote the pressure field and assuming that p and
u are zero at t ¼ 0 we appeal to the simplest form of the model pre-
sented by Rohan et al. in [25] and, on borrowing terminology from
poroelasticity, find that the total stress, ~rij :¼ rij � adijp, is given by,

~rij ¼
Z t

0
uðt � sÞDijkl

@

@s
eklðuðsÞÞds� ðbij þ /dijÞp; ð2Þ

where bij þ /dij are the Biot stress coefficients with b symmetric and
/ > 0 the volume fraction of the fluid part. We will make the sim-
plifying assumption that bij ¼ bdij for a positive real number b and
then after integration by parts we obtain

~rij ¼ DijkleklðuðtÞÞ � adijpþ
Z t

0
_uðt � sÞDijkleklðuðsÞÞds ð3Þ

for a constant a ¼ bþ /.
Again from [25] we have for the pressure equation that

r � Krp ¼ ð/cþ fÞ _pþ adij _eij þ f
Z t

0

_wðt � sÞ _pðsÞds; ð4Þ

where c > 0 denotes the fluid’s compressibility and f the magnitude
of the skeleton’s viscoelastic compressibility. We assume a com-
pressible porous medium so that f > 0. It is, perhaps, helpful to
remark that we are using slightly different notation to that
introduced in [25]: in particular, f and g (see later) here correspond
to l̂ and ~l there.
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