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a b s t r a c t

We extend the static condensation reduced basis element (scRBE) method to treat the class of parame- 
trized comp lex Helmholtz partial differential equations. The main ingredients are (i) static condensation 
at the interdomain level, (ii) a conforming eigenfunction ‘‘port’’ representation at the inter face level, (iii)
the reduced basis (RB) approximation of finite element (FE) bubble functions at the intradomain level,
and (iv) rigorous system-level error bounds which reflect RB perturbation of the FE Schur complement.
We then incorpor ate these ingredient s in an Offline–Online computational strategy to achieve rapid 
and accurate prediction of parametric systems formed from instantiations of interoperable parametrized 
archetype components from a Library. We introduce a number of extensions with respect to the original 
scRBE framework: first, primal–dual RB methods for general non-symmetr ic (complex) problems; sec- 
ond, stability constant procedures for weakly coercive problems (at both the interdomain level and int- 
radomain level); third, treatment of non-port linear–functional outputs (as well as functions of outputs);
fourth, consideration of particular comp onents and outputs relevant to acoustic applications. We con- 
sider several numerical examples in acoustics (in particular focused on mufflers and horns) to demon- 
strate that the approach can handle models with many parameters and/or topology variations with 
particular reference to waveguide-like applications.

� 2013 Elsevier B.V. All rights reserved.

1. Introductio n

Computati onal simulatio n of parametrized partial differential 
equations (PDEs) is an essential tool in many engineering and de- 
sign contexts. However, classical numerical methods, such as finite
element or finite difference methods, are often computational ly
expensive, and therefore have limited applicability in many appli- 
cations which require rapid response. Model order reduction 
methods, such as proper orthogon al decompositi on (POD) [1] or
the reduced basis (RB) method [2–4], are thus an attractive alterna- 
tive. However , most model order reduction methods are con- 
structed for a fixed model with predetermin ed geometry and, in
general, are incapable of dealing with many (even Oð10Þ)
parameters.

The static condensati on reduced basis element method (scRBE),
introduced in [5], permits the treatment of many paramete rs—al-
beit at some additional computational cost. The scRBE is similar 
in many ways to methods proposed earlier. In particular , the scRBE 
may be viewed as a parametric extension of component modal 
synthesis approaches [6–9]; the scRBE may be interpreted as a
‘‘strong matching’’ and hence interoperable variant of the classical 

reduced basis element approach [10]; and finally the scRBE may be
seen as a ‘‘heterogeneou s’’ version of the Multiscale RB method 
[11] which in turn is informed by the Multisca le FE method [12].
Key differentiato rs of the scRBE with respect to these earlier ap- 
proaches are, first, interoperabilit y of components for greater flex-
ibility, and second, rigorous and efficient system–level error 
bounds.

In this paper, we extend the scRBE framework to treat the class 
of complex, non-symmetri c elliptic PDEs. We introduce a number 
of extensions with respect to the original scRBE framework: first,
primal–dual RB methods for general non-symmetri c (complex)
problems ; second, stability constant procedures for weakly coer- 
cive problems (at both the interdomain level and intradomai n le- 
vel); third, treatment of non-port linear–functional outputs (as
well as functions of outputs); fourth, consideration of particular 
components and outputs relevant to acoustic applications .

In Section 2 we introduce a component-ba sed framework for 
our target model problem. The truth approximat ion, which we
wish to accelerate, is introduce d in Section 3. In Sections 4 and 5
we develop the static condensation RBE approximation and error 
bounds, respectively. We then discuss the Offline and Online com- 
putational procedures in Section 6, where we provide detailed 
operation counts and storage requiremen ts for the Online stage 
in particular . In Section 7 we introduce a complex-val ued non- 
symmetr ic Helmholtz equation for modeling acoustic devices,
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and in Section 8 we present a series of numerical results for the 
static condensati on RBE framework applied to some acoustic de- 
vice model problems.

We note that we include in this paper much of the foundation 
material from [5] as the new contributions and extensions are 
rather densely interspersed and hence not easily segregated. We
adopt as much as possible the language and notation of [5] so that 
the details we do omit may be readily identified in [5].

2. Component- based framework 

We develop a component-ba sed framework [5] for modeling 
acoustic devices (mufflers and horns). This framework is developed 
in terms of physical domain and reference domain quantities. We be- 
gin with the former.

2.1. Physical domain 

We first introduce a set or library of regions, which we denote 
‘‘archetype component’’ domains, X̂o

mðl̂
geo
m Þ;1 6 m 6 M, for geome- 

try parameters l̂geo
m . The mth archetyp e component has P̂geo

m geo-
metric parameters, which reside in an associate d geometry 
parameter domain D̂geo

m � RP̂geo
m . For each archetype component do- 

main X̂o
mðl̂

geo
m Þ we further identify elements of the boundary,

ĉo
m;jðl̂

geo
m Þ;1 6 j 6 nc

m (where nc
m P 1), which we denote ‘‘archetyp e

component port’’ domains. We require for simplicit y that the inter- 
section of any two ports in any given archetype component is
empty; this ‘‘mutuall y disjoint port’’ condition may be relaxed, as
we discuss further below. Here the ^ indicates archetyp e and the 
o refers to a quantity defined over the physical domain (we will la- 
ter introduce reference domains).

We associate to each of these archetype component domains 

sesquilinear and antilinear forms: for w;v 2 H1ðX̂o
mðl̂

geo
m ÞÞ,

we define âo
mðw;v; l̂coeff

m ; l̂geo
m Þ; f̂ o

mðv ; l̂coeff
m ; l̂geo

m Þ; ‘̂o
mðv ; l̂coeff

m ; l̂geo
m Þ;

1 6 m 6 M, for coefficient parameters l̂coeff
m in associated coeffi-

cient parameter domains D̂coeff
m 2 RP̂coeff

m . We recall that for any do- 

main O in Rd;H1ðOÞ � fv 2 L2ðOÞ : rv 2 ðL2ðOÞÞdg, where L2ðOÞ �
fv measurable over O :

R
O jvj

2finiteg; note that we let v denote
complex conjugat e of v such that the complex modulus is then 

jv j �
ffiffiffiffiffiffiffi
vv
p

. The forms âo
mðw;v ; l̂coeff

m ; l̂geo
m Þ and f̂ o

mðv ; l̂rmcoeff 
m ; l̂geo

m Þ
will define the PDE weak form, and ‘̂o

mðv ; l̂coeff
m ; l̂geo

m Þ will define

the output functiona l. Here we suppose that w; v 2 H1 X̂o
mðl̂

geo
m Þ

� �
are complex-valued functions, and that âo

m w;v; l̂coeff
m ; l̂geo

m

� �
need

not be a symmetric form – hence we generalize the formulation 
from [5]. We also define for future reference D̂m � D̂geo

m �
D̂coeff

m ;1 6 m 6 M; D̂m is the parameter domain (both geometry 
and coefficient) for the mth archetype component. Also, we let 
l̂m � ðl̂geo

m ; l̂coeff
m Þ 2 D̂m denote the parameters for the mth

archetype component.
We next introduce ‘‘instantiated component’’ domains,

Xo
i lgeo

i

� �
¼ X̂o

MðiÞ lgeo
i

� �
;1 6 i 6 I, where M is a mapping from 

f1; . . . ; Ig (component instantiatio ns) to f1; . . . ;Mg (component
archetypes). The correspondi ng instantiated component port do- 
mains, also denoted more succinctl y as ‘‘local ports,’’ are thus given 
by co

i;j lgeo
i

� �
¼ ĉo

MðiÞ;j lgeo
i

� �
;1 6 j 6 nc

MðiÞ. Here lgeo � lgeo 
1 ; . . . ;lgeo

I

� �
2 Dgeo, where Dgeo is a subset of

QI
i¼1D̂

geo
MðiÞ which ensures that a

geometric compatib ility requirement is satisfied (as well as any 
problem–specific constrain ts on parameters). Note these instanti- 
ated components no longer bear the ^ of the archetyp e components 
but retain the o associate d with the physical domain. For future 

reference we also define Dcoeff �
QI

i¼1D̂coeff
MðiÞ . Also, we set l �

ðlgeo;lcoeffÞ 2 D � Dgeo �Dcoeff .

We now consider a ‘‘system domain’’ XoðlgeoÞ which is the un- 
ion of instantiated component domains,

XoðlgeoÞ ¼
[I

i¼1

Xo
i lgeo

i

� �
:

We suppose that this system domain satisfies geome tric compati -
bility conditio ns, and in particula r that instantiat ed component s
intersec t only over entire local ports – see [5] for more details.

Given the port connectio n requirements we can now define a
set of global ports Co

pðlgeoÞ;1 6 p 6 nC: each global port is either 
the intersect ion (in fact, coincidence) of two local ports or a local 
port on @XoðlgeoÞ. We can summarize the port connections with in- 
dex sets pp;1 6 p 6 nC, which for the case of a global port corre- 
sponding to (coincidence of) two local ports co

i0 ;j0 ; c
o
i00 ;j00 takes the 

form pp ¼ fði0; j0Þ; ði00; j00Þg and for the case of a global port corre- 
sponding to a single local port ci0 ;j0 takes the form pp ¼ fði0; j0Þg.
We can also define a local to global port index mapping G such that 
pp ¼ fði0; j0Þ; ði00; j00Þg is equivalent to p ¼ Gi0 ðj

0Þ ¼ Gi00 ðj
00Þ; this map- 

ping is invertible for a given instantiated component such that 
j0 ¼ G�1

i0 ðpÞ and j00 ¼ G�1
i00 ðpÞ. We observe from the geometri c com- 

patibility condition that the sets pp;1 6 p 6 nC, and the mapping 
G do not depend on l 2 Dgeo.

We may now introduce a global function space XoðlgeoÞ �
fvo 2 H1ðXoðlgeoÞÞ : v j@Xo

DðlgeoÞ ¼ 0g where @Xo
DðlgeoÞ represents

the part of the system domain boundary over which we impose 
homogen eous Dirichlet conditions (note inhomogeneous Dirichlet 
condition s are readily treated by appropriate lifting functions). For 
simplicit y, we assume that @Xo

DðlgeoÞ is the union of (at least one)
entire instantiated component port domains. We endow XoðlgeoÞ
with an inner product and induced norm,

ðv ;wÞXoðlgeoÞ; kwkXoðlgeoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv;wÞXoðlgeoÞ

q
; 8v ;w2XoðlgeoÞ; ð1Þ

which will be specified more precisely subsequen tly. It is then nat- 
ural to form the system sesquilinea r and antilinear forms, defined
with respect to XoðlgeoÞ, in terms of the corresp onding archetype 
componen t forms introduce d earlier. In particula r, for all 
wo; vo 2 XoðlgeoÞ, we introduce 

aoðwo; vo;lcoeff ; lgeoÞ ¼
XI

i¼1

âo
MðiÞ wojXo

i lgeo
ið Þ;v

ojXo
i lgeo

ið Þ; l
coeff
i ;lgeo

i

� �
;

ð2Þ

f oðvo;lcoeff ; lgeoÞ ¼
XI

i¼1

f̂ o
MðiÞ vojXo

i lgeo
ið Þ;l

coeff
i ;lgeo

i

� �
; ð3Þ

‘oðvo;lcoeff ; lgeoÞ ¼
XI

i¼1

‘̂o
MðiÞ vojXo

i lgeo
ið Þ;l

coeff
i ;lgeo

i

� �
: ð4Þ

We may then introduce inf-sup and continui ty constan ts for 
l 2 D,

boðlÞ � inf
vo2XoðlgeoÞ

sup
wo2XoðlgeoÞ

jaoðvo;wo;lcoeff ;lgeoÞj
kvokXoðlgeoÞkwokXoðlgeoÞ

; ð5Þ

co;contðlÞ � sup
vo2XoðlgeoÞ

sup
wo2XoðlgeoÞ

jaoðvo;wo; lcoeff ;lgeoÞj
kvokXoðlgeoÞkwokXoðlgeoÞ

: ð6Þ

We assume that there exists a0 > 0 and finite ccont 
0 such that 

aoðlÞP a0 and co;contðlÞ 6 ccont 
0 for all l 2 D. We also assume that 

our antilinear functionals are bounded over XoðlgeoÞ.
We may now state the system problem. Given l 2 D: find the 

field uoðlÞ 2 XoðlgeoÞ such that 

aoðuoðlÞ;vo;lcoeff ;lgeoÞ ¼ f oðvo; lcoeff ;lgeoÞ; 8vo 2 XoðlgeoÞ; ð7Þ

evaluate the system output of interest sðlÞ ¼ ‘oðuoðlÞ;lcoeff ;lgeoÞ,
where in general sðlÞ 2 C. Under the assumptions on inf-sup 
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