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a b s t r a c t

The simulation of biological interfaces at the Living Cell scale relies on membrane models that are a com-
bination of a finite–strain elastic part, typically modeling the contribution of a cytoskeleton, and a viscous
part that models the contribution of the lipidic bilayer. The motion of these membranes is driven by a
shape-dependent energy, modeled by means of the Canham–Helfrich formula or variants thereof. In this
article we review the finite element formulation of elastic membranes, and then extend it so as to deal
with the viscous behavior of lipidic bilayers. The resulting numerical method, which is easily imple-
mented on codes developed for solid membranes, is assessed on the simulation of dynamical prolate-
to-oblate transitions of simplified red blood cells under tweezing.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fluidic behavior is characterized by the impossibility of rest
under shear. Both in Nature and in biomedical applications there
exist highly-deformable membranes that exhibit fluidic behavior.
The most important example is that of lipidic bilayers, which are
a basic constituent of the living cell membrane. They consist of
two molecular layers of amphiphilic phospholipids, each layer
exposing the hydrophilic ends of their molecules to the adjacent
water and thus also keeping the hydrophobic ends away from it.
The molecules in lipidic membranes exhibit very high tangential
mobility, with relatively low layer-to-layer transfer rate. Molecular
simulations have greatly improved the understanding of these
systems, in particular of their tangential behavior [43,50,16,38].
However, for simulations at the scale of a whole Living Cell to be
computable during biologically significant time lapses, continuum
models are mandatory. The best candidate model corresponds to a
two-dimensional fluid, flowing on a time-dependent, curved
surface in three-dimensional space.

The actual rheological behavior of lipidic bilayers is predomi-
nantly viscous (i.e., Newtonian) and area-preserving [47,32,34],
with a surface viscosity l of about 5–13 � 10�9 Pa s m [55] that

can take higher values, up to 2 � 10�6 Pa s m. Though some visco-
elasticity may exist, recent rheometrical data suggest that it is not
significant [21,22].

In this work we propose a method for the finite element simu-
lation of viscous membranes. It is strongly based on variational
methods that are well established in the field of Solid Mechanics,
obtaining the discrete equations by perturbations of the appropri-
ate energy. The presentation begins with a brief review of the finite
element treatment of elastic membranes, for which details can be
found in [24] and biological applications in [41,27,52,30,28]. In a
suitable limit, the elastic operator tends to the viscous operator,
to which the zero-tangential-divergence (inextensibility) condition
is added to arrive at a realistic approximation of the surface fluidic
behavior. The inextensibility condition introduces a Lagrange mul-
tiplier field P which plays the role of a non-homogeneous surface
tension. A stabilization term proportional to the surface Laplacian
of P is added to allow for the use of the same interpolants for all
fields. As driving force for the motion, the Canham–Helfrich model
[11,23] is added in order to study shape evolutions typical of bio-
logical membranes. Overall, the method seems to be the first to
compute truly viscous and inextensible relaxation of membranes
in general 3D geometries. This is illustrated by simulating the
dynamical response of a (simplified) red blood cell under oscilla-
tory tweezing.

Possible applications of the proposed method are numerous,
such as dynamical studies of membrane adhesion [15], conforma-
tion [32], stomatocyte–discocyte–echinocyte [31] and other shape
transformations [48,39], among many others.
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2. Elastic membranes

2.1. Membrane kinematics

The large–deformation kinematics of membranes is already
well known but will be reviewed here as a basis for the extensions
made later on. The interested reader is referred, for example, to the
detailed articles by Holzapfel et al. [24] and Bonet et al. [6].

Consider an open set T̂ in R2, which will typically be a master
finite element. The material points of some part of the membrane
are associated to T̂ , which acts as a material configuration. The
position, at some instant t, of the material points of the membrane
associated to T̂ is described by some injective, continuously
differentiable function

ut : T̂ ! R3 ð1Þ

In the finite element implementation this function is defined
elementwise as a linear combination of basis functions on T̂ , i.e.,

utðnÞ ¼
XM

m¼1

XðmÞðtÞNðmÞðnÞ ð2Þ

where XðmÞðtÞ is the position, at time t, of the mth node of the
element (we assume a Lagrangian finite element with M nodes for
clarity). Notice that n 2 R2.

The image of T̂ by ut is denoted here by Tt . Because of the injec-
tivity of ut , it is possible to define the (also of class C1) inverse
mapping

wt : Tt ! bT ; such that wtðutðnÞÞ ¼ n 8n 2 bT ð3Þ

Without loss of generality, it is assumed that the relaxed config-
uration of the membrane corresponds to t ¼ 0. The deformation of
the membrane is thus characterized by the mapping

ft : T0 ! Tt ; defined by ftðxÞ :¼ utðw0ðxÞÞ ð4Þ

To compute the deformation gradient some additional work is
needed, since the gradient of ut is, with cartesian coordinates for
Tt , a 3� 2-matrix and thus not invertible (if bT were an open
set in R3, one would simply compute rftðxÞ ¼ rutðw0ðxÞÞ
ru0ðw0ðxÞÞ
� ��1

).
The tangential deformation gradient is a rank-2 tensor from the

tangent plane at x ¼ u0ðnÞ to the tangent plane at y ¼ ftðxÞ ¼ utðnÞ.
Take a cartesian basis ð�eð1Þ; �eð2ÞÞ at bT , which is nothing but the
canonical basis at the master element. Two linearly independent
vectors ðGð1Þ;Gð2ÞÞ tangent to T0 at x are defined as the infinitesimal
images of the basis:

u0ðnþ �1�eð1Þ þ �2�eð2ÞÞ ¼ u0ðnÞ þ �1Gð1Þ þ �2Gð2Þ þ Oð�2
1 þ �2

2Þ ð5Þ

and are calculated in cartesian components as

GðiÞ
n o

j
¼
@u0

j

@ni
¼
XM

m¼1

XðmÞjð0Þ
@NðmÞ
@ni

i ¼ 1;2; j ¼ 1;2;3 ð6Þ

the normal �N to T0 at x is given by

�N ¼ Gð1Þ � Gð2Þ

kGð1Þ � Gð2Þk
ð7Þ

thus defining an orthonormal basis of R3 such that its two first vec-
tors are tangent to T0 (and thus a basis of the tangent plane) as

V ð1Þ ¼ Gð1Þ

kGð1Þk
; V ð2Þ ¼ �N � V ð1Þ; V ð3Þ ¼ �N ð8Þ

Analogous vectors can be defined at y by replacing u0 with ut in the
previous definitions. They will be denoted by lowercase letters:
gð1Þ; gð2Þ; �n, v ð1Þ; v ð2Þ and v ð3Þ.

The tangential deformation gradient is thus given by the infin-
itesimal deformation (by ft) of the vectors V ð1Þ and V ð2Þ, which is
given by

ftðxþ �1 V ð1Þ þ �2 V ð2ÞÞ ¼ ftðxÞ þ ðF 11�1 þ F 12�2Þv ð1Þ þ ðF 21�1

þ F 22�2Þv ð2Þ þ Oð�2
1 þ �2

2Þ ð9Þ

where the matrix F is given by

F 11 ¼
kgð1Þk
kGð1Þk

ð10Þ

F 12 ¼
gð2Þ � v ð1Þ

Gð2Þ � V ð2Þ
� kg

ð1Þk
kGð1Þk

Gð2Þ � V ð1Þ

Gð2Þ � V ð2Þ
ð11Þ

F 21 ¼ 0 ð12Þ

F 22 ¼
gð2Þ � v ð2Þ

Gð2Þ � V ð2Þ
ð13Þ

Remark 2.1. In fact, the left-hand side of (9) should read

ft P0ðxþ �1 V ð1Þ þ �2 V ð2ÞÞ
� �

where P0 : R3 ! T0 is the closest-point projection onto T0, because
xþ �1 V ð1Þ þ �2 V ð2Þ does not belong to T0 and thus ft is not defined
at it.

Eq. (9) defines the deformation-gradient tensor Ft which maps
de tangent plane at x 2 T0 onto the tangent plane at y 2 Tt as the
only linear operator satisfying, for all tangent vectors t,

ft P0ðxþ � tÞð Þ ¼ y þ �Ftt þOð�2Þ ð14Þ

To prove that (14) indeed holds, one starts from the identities
(true by construction)

gðiÞ ¼ FtGðiÞ i ¼ 1;2 ð15Þ

so that, since F 11 is, from (9), equal to

F 11 ¼ v ð1Þ � Ft V ð1Þ

it results that

F 11 ¼ v ð1Þ � Ft V ð1Þ ¼ gð1Þ

kgð1Þk � F
t Gð1Þ

kGð1Þk

 !
¼ gð1Þ � Ft Gð1Þ

kgð1ÞkkGð1Þk
¼ kg

ð1Þk
kGð1Þk

From the identity Gð2Þ ¼ Gð2Þ � V ð1ÞV ð1Þ þ Gð2Þ � V ð2ÞV ð2Þ, applying Ft to
both sides and rearranging, we obtain

Ft V ð2Þ ¼ 1

Gð2Þ � V ð2Þ
gð2Þ � Gð2Þ � V ð1Þ

kGð1Þk
gð1Þ

 !
and this yields

F 12 ¼ v ð1Þ � Ft V ð2Þ ¼ v ð1Þ � gð2Þ

Gð2Þ � V ð2Þ
� Gð2Þ � V ð1Þ

Gð2Þ � V ð2Þ
kgð1Þk
kGð1Þk

The other two components of F are obtained similarly.
The right tangential Cauchy–Green tensor Ct ¼ ðFtÞTFt , ex-

pressed in the basis ðV ð1Þ;V ð2ÞÞ, has components that are straight-
forward to calculate,

Ct ¼ F TF ¼ F 2
11 F 11F 12

F 11F 12 F 2
12 þ F 2

22

 !
ð16Þ

and the Green–Saint Venant tensor Et ¼ ðCt � IÞ=2, in the same ba-
sis, is given by the matrix

Et ¼ 1
2
Ct � I
� �

ð17Þ

with I the identity matrix. The energy density at y ¼ ftðxÞ of an iso-
tropic elastic material is a function of the invariants of Ct (such as its

I.V. Tasso, G.C. Buscaglia / Comput. Methods Appl. Mech. Engrg. 255 (2013) 226–237 227



Download English Version:

https://daneshyari.com/en/article/6918100

Download Persian Version:

https://daneshyari.com/article/6918100

Daneshyari.com

https://daneshyari.com/en/article/6918100
https://daneshyari.com/article/6918100
https://daneshyari.com

