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a b s t r a c t

We here propose a multiscale numerical method for the solution of stochastic parametric partial differ-
ential equations with localized uncertainties described with a finite number of random variables. It is
based on a multiscale domain decomposition method that exploits the localized side of uncertainties
and incidentally improves the conditioning of the problem by operating a separation of scales. An effi-
cient iterative algorithm is proposed that requires the solution of a sequence of simple global problems
at a macro scale, involving a deterministic operator, and local problems at a micro scale for which we
have the possibility to use fine approximation spaces. Global and local problems are solved using tensor
approximation methods allowing the representation of high dimensional stochastic parametric solutions.
Convergence properties of these tensor based methods, which are closely related to spectral decomposi-
tions, benefit from the separation of scales. Different types of uncertainties are considered at the micro
level. They may be associated with some variability in the operator or source terms, or even with some
geometrical variability. In the latter case, specific reformulations of local problems using fictitious
domain methods are introduced.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty quantification methods using functional ap-
proaches have emerged for the last two decades in computational
engineering. Numerous developments have been realized for the
propagation using functional approaches (see reviews [1–4]). In re-
cent years, interest has grown for stochastic multiscale models and
several numerical methods devoted to scale coupling have been
extended to stochastic problems with global uncertainties (see
e.g. [5–11]). Some of these methods, e.g. the Multiscale Finite Ele-
ment Methods, draw their efficiency from assumptions as low per-
turbation hypothesis and yield results that are all the more precise
as the scales are well separated. Other methods based on domain
decomposition have also been proposed in [12–14] for handling
multiscale stochastic problems and are again well suited when
uncertainties occur in the whole domain.

Nevertheless, the propagation of uncertainties through multi-
scale stochastic models remains today a challenging issue for they
give rise to high dimensional stochastic problems and this high
dimensionality is thus to be handled genuinely. Moreover, mono-
scale numerical approaches clearly suffer from the complexity of
multiscale solutions that present very high spectral content.

In the present work, we focus on multiscale problems with local-
ized uncertainties (in medium property, source terms or geometry).
In the presence of numerous localized sources of uncertainties,
dedicated approaches have to be developed in order to handle the
high dimensionality and complexity of associated multiscale
models. At the deterministic level, dedicated methods have met
the demand of coupling numerical models at different scales and
some have been extended to stochastic models. Among these deter-
ministic methods, one can distinguish the mono-model methods
based on adaptive mesh or enrichment techniques [15–18] from
the multi-model methods based on patches as the global–local
iterative methods proposed in [19–23] or the bridging methods
proposed in [24–26] or in [27] with the Arlequin method. The latter
has been exploited in the stochastic framework for deterministic-
stochastic coupling in [28,29] for a homogenization purpose.

We here propose a dedicated method based on a multiscale
method with patches that exploits the localized side of uncertain-
ties. It belongs to the class of the global–local iterative methods
mentioned above. In its extension to the stochastic framework,
an efficient iterative algorithm is proposed that requires the solu-
tion of a sequence of simple global problems at a macro scale,
involving a deterministic operator, and local problems at a micro
scale for which we have the possibility to use fine approximation
spaces. In the meanwhile the separation of scales has the advan-
tage of improving the conditioning of the problem. In order to
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address the high dimensionality that arises from these multiscale
problems with numerous sources of uncertainties, the global and
local problems are solved using tensor based approximation meth-
ods allowing the representation of high dimensional stochastic
parametric solutions. Convergence properties of these tensor based
methods, which are closely related to spectral decompositions,
benefit from the separation of scales. Different formats of tensor
representations can be exploited [30]. Here the classical canonical
decompositions and the hierarchical canonical decompositions as
in [31,32] are introduced, the latter ones giving very low ranks rep-
resentations. The introduction of these decompositions within the
proposed multiscale approach is a key point that makes the overall
strategy very efficient.

Different types of uncertainties are considered at the micro le-
vel. They may be associated with some variability in the operator
or source terms, or even with some geometrical uncertainty. In
the latter case, specific reformulations of local problems using fic-
titious domain methods are introduced in order to formulate the
problem on a tensor product space [33–35].

The paper is structured as follows. In Section 2, the model prob-
lem with localized variabilities is first presented. Then the global–
local iterative algorithm is introduced in Section 3. Section 4 is
dedicated to the approximate solutions of the global and local
problems involved in the iterative algorithm: definition of approx-
imation spaces and fictitious domain methods for the reformula-
tion of the local problems when these present geometrical
variabilities. Section 5 extends the method to the case of multiple
patches with independent variabilities. The behavior of the global–
local iterative algorithm is analyzed in Section 6 on the first
numerical example with four patches and with no geometrical de-
tails. The convergence and robustness results of the global–local
iterative algorithm proven in Section 3 are notably illustrated on
this example. The influence of the sizes of the patches on the con-
vergence of the algorithm is also analyzed. Tensor approximation
methods are finally introduced in Section 7 for the solution of local
and global problems in order to handle the high dimensionality.
They are applied in Section 8 to a high dimensional problem which
contains geometrical variabilities. This last illustration shows the
relevance of the use of tensor approximation methods and in par-
ticular of hierarchical decompositions that provide very low-rank
representations of local and global solutions.

2. Problem with localized variabilities

We consider a diffusion problem defined on a domain X � Rd:

�r � ðKruÞ ¼ f on X;

Kru � n ¼ 0 on CN;

u ¼ 0 on CD;

ð1Þ

with K a diffusion parameter, and CD and CN the Dirichlet and Neu-
mann boundaries respectively. We denote by n a set of random
parameters, with values in N, modeling the uncertainties on the
geometry, the source term and the diffusion coefficient. We denote
by ðN;B; PnÞ the associated probability space, where Pn is the prob-
ability law of n.

2.1. Function spaces

For a Hilbert space H equipped with an inner product norm j � j,
we denote by HN the Bochner space of square integrable functions
defined on the measure space ðN;B; PnÞ and with values in H:

HN ¼ L2
Pn
ðN;HÞ ¼ v : y 2 N # vðyÞ 2 H; Eðj vðnÞj2Þ < þ1

n o
;

where Eð�Þ is the mathematical expectation defined by

EðvÞ ¼
Z

N
vðyÞdPnðyÞ:

Bochner space HN is a Hilbert space when equipped with the fol-
lowing inner product norm

kvk ¼ EðjvðnÞj2Þ1=2
:

For H ¼ R, we use the notations S :¼ RN ¼ L2
Pn
ðN; RÞ :¼ L2

Pn
ðNÞ. Note

that H can be a random function space, i.e. dependent on n (e.g.
when considering a space of functions defined on an uncertain do-
main). In the case where H is deterministic, the Bochner space can
be identified with the tensor Hilbert space1 H� S:

HN ¼ L2
Pn
ðN;HÞ ’ H� S:

2.2. Initial weak formulation of the problem

Let introduce the Hilbert space V ¼ fv 2 H1ðXÞ; v ¼ 0 on CDg
equipped with the inner product norm j ujX ¼

R
Xru � ru

� �1=2. Let

VN ¼ L2
Pn
ðN;VÞ be the Hilbert space equipped with the norm

k � kX ¼ Eðj �j2XÞ
1=2. We introduce the classical weak formulation of

problem (1):

u 2 VN; aXðu; duÞ ¼ ‘XðduÞ 8du 2 VN; ð2Þ

with

aXðu; duÞ ¼ E

Z
X

Kru � rdu
� �

¼
Z

N

Z
X

Kru � rdudPn;

‘XðduÞ ¼ E

Z
X

f du
� �

¼
Z

N

Z
X

f dudPn:

We introduce the notation X � N ¼ fðx; yÞ 2 Rd � N; x 2 XðyÞg. Note
that in the case of a deterministic domain X, we simply have

X � N ¼ X� N. Problem (2) is well-posed if f 2 L2ðXÞN and if K is
uniformly bounded and elliptic on X � N, i.e. there exist constants
Kinf > 0 and Ksup > 0 such that we have almost everywhere on X � N

Kinf jfj2 6 f � Kðx; yÞf 6 Ksup jfj2 8f 2 Rd: ð3Þ

2.3. Patch containing localized variabilities

We consider that the diffusion coefficient K, the source term f or
the domain X are uncertain only on a part K � X. K is called a
patch. The boundary @K of this patch contains the possible uncer-
tain part of the boundary @X. That means that K possibly depends
on n and is such that

XðnÞ ¼ ðX nKÞ [KðnÞ;

with X nK deterministic. We denote by C ¼ @ðX nKÞ \ @K the de-
terministic interface between X nK and the patch K (see Fig. 1).
We then consider that

Kðx;nÞ¼
K0ðxÞ for x2XnK
Kðx;nÞ for x2KðnÞ

�
and f ðx;nÞ¼

f0ðxÞ for x2XnK
f ðx;nÞ for x2KðnÞ

�
:

1 Recall that an infinite dimensional tensor Hilbert space V is obtained by the
completion with respect to some inner product norm of an algebraic tensor space
a � Vk ¼ spanf�d

k¼1vk; vk 2 Vkg, where Vk are d vector spaces (we refer to [30],
Chapter 4, for a detailed introduction to infinite dimensional tensor Banach spaces).
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