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This paper is devoted to a computational stochastic multiscale analysis of nonlinear structures made up
of heterogeneous hyperelastic materials. At the microscale level, the nonlinear constitutive equation of
the material is characterized by a stochastic potential for which a polynomial chaos representation is
used. The geometry of the microstructure is random and characterized by a high number of random
parameters. The method is based on a deterministic non-concurrent multiscale approach devoted to
micro-macro nonlinear mechanics which leads us to characterize the nonlinear constitutive equation
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dom variables, the problem is transformed into another one consisting in identifying the potential on a
polynomial chaos expansion. Several strategies, based on novel algorithms dedicated to high stochastic
dimension, are used and adapted for the class of multi-modal random variables which may characterize
the potential. Numerical examples, at both small and large scales, allow analyzing the efficiency of the
approach through comparisons with classical methods.
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1. Introduction

The problem of the stochastic nonlinear homogenization of het-
erogeneous random microstructures is a difficult task. Among the
many issues related to this objective, the first ones appears at
the deterministic level, where, unlike the linear case, the general
form of the constitutive equations is unknown. Moreover, the prin-
ciple of superposition is no longer available and makes unsuitable
any analytical homogenization scheme applied to the small elastic
strains. Many recent works have been devoted to overcome these
difficulties and can be classified in two distinct families. First, ap-
proaches based on the extension of classical analytical homogeni-
zation methods [8,1] and on second-order homogenization
techniques [34,26] both leading to determine the effective consti-
tutive laws of nonlinear composites. Secondly, approaches based
on numerical multiscale simulations such as concurrent methods
[37,12,46,49,28] and non-concurrent ones [33,44,45,50].

On the other hand, the uncertain nature at the microscopic level
of many classes of heterogeneous materials, should be taken into
account if one seeks to obtain a reliable model of the effective con-
stitutive law. Thus, many recent works have been devoted to the
construction and the identification of stochastic models at the fin-
est scale and to their incorporation in a multiscale analysis through
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ad hoc numerical methods (see [44,18,43] for instance). Naturally,
at the present time, the different proposed approaches are only
available in the case of linear elasticity and still need further
developments to incorporate mechanical nonlinearities at the
microscopic level. Moreover, these methods involve very high com-
putational times, especially if one deterministic simulation appears
expensive. A great challenge thus comes from the extension of the
deterministic methods stated above to the stochastic framework
with reasonable computational costs.

Based on a novel efficient non-concurrent multiscale approach
developed by Yvonnet and co-workers [50-52], we have extended
this method to the stochastic case in Ref. [7]. The so-called Stochas-
tic Numerical EXplicit Potentials method (S-NEXP) aims at numer-
ically determine the apparent strain energy density function
according to the large scale strain states and the random variables
describing the uncertainties related to the microstructure (geo-
metrical or material parameters). This parametric technique allows
one getting efficient solutions but suffers from the “curse of
dimensionality” since the interpolation scheme requires a high
number of microscopic nonlinear numerical simulations. This
problem is similar to the one encountered in the framework of
stochastic intrusive techniques, such as Galerkin methods which
rely on conventional tensor-product integration rules. However,
taking into account a high number of random parameters is of
first importance in a stochastic multiscale analysis and we thus
propose a different methodology based on polynomial chaos repre-
sentations. Initiated in Ref. [14], the methodology to construct a


http://dx.doi.org/10.1016/j.cma.2012.10.016
mailto:christian.soize@univ-paris-est.fr
mailto:christian.soize@univ-mlv.fr
http://dx.doi.org/10.1016/j.cma.2012.10.016
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

62 A. Clément et al./ Comput. Methods Appl. Mech. Engrg. 254 (2013) 61-82

polynomial chaos expansion of random fields has been intensely
developed to solve stochastic partial differential equations
[3,15,16,13,24,22,29,32,31,35,38,11] but also for the identification
of random fields using experimental data and classical inference
techniques [17,2] or maximum likelihood estimation [9,10,43,18].
A new methodology has been recently introduced to deal with
the identification of polynomial chaos representations in high-
dimension [39,41]. We propose to use this novel technique in order
to obtain a representation of the stochastic nonlinear constitutive
equations which can thus be seen as a stochastic non-intrusive
technique as opposed to the Stochastic Numerical EXplicit Poten-
tials method [7] which suffers from the classical tensor-product
interpolation rules since it acts as an intrusive technique. Then,
we based our approach on the same nonlinear homogenization
scheme presented in Ref. [7] but the methodology proposed to
characterize the stochastic apparent nonlinear constitutive equa-
tions is totally different. Indeed, we use the NEXP approach [52]
as a deterministic solver, which is not directly extended to the sto-
chastic framework, and we reformulate the problem into the iden-
tification of polynomial chaos expansions in high-dimension.

The paper is organized as follows. Section 2 deals with the
homogenization of nonlinear heterogeneous materials at finite
strains in a deterministic framework. In the same section, the
Numerical EXplicit Potentials method (NEXP) is also briefly pre-
sented. Section 3 presents the probabilistic model which allows
generating realizations of the microstructure. In Section 4, we then
detail the procedure of identification of the reduced-order random
variables, resulting from a principal component analysis, on poly-
nomial chaos expansions. Since the problem of identifying multi-
modal random variables arises, we define a prior stochastic model
based on mixtures of polynomial chaos as introduced in Ref. [30].
Both cases of uni-modal and multi-modal random variables are
then addressed. The efficiency of the proposed method is shown
in Section 6 with two numerical examples at the microscale and
one example at the mesoscale. For each problem, the proposed ap-
proach is compared with classical methods showing its efficiency.
Some concluding remarks are finally drawn in Section 7.

2. The method of Numerical EXplicit Potentials

In this section, we detail the nonlinear homogenization scheme
applied to hyperelastic heterogeneous materials and we present
the deterministic method of Numerical EXplicit Potentials [50-
52,7] (NEXP) leading to a continuous explicit form of the strain en-
ergy density function which characterizes the effective constitutive
equations. In the field of homogenization, knowledge on the sepa-
ration of the scales is vital to perform an appropriate mechanical
analysis. We set apart two cases: the case where the two scales
are the microscale and the macroscale and the case for which the
two scales are the microscale and the mesoscale. More precisely,
when the two considered scales are the microscale and the macro-
scale, the scales are separated. Such a separation is obtained when
the spatial correlation lengths of the mechanical fields at the
microscale are small enough with respect to the macroscale. The
statistical fluctuations at the macroscale are then negligible and
the macroscopic mechanical quantities are thus deterministic
and are referred as the effective properties. On the other hand,
when the two considered scales are the microscale and the meso-
scale, the scales are not separated. The statistical fluctuations at
the mesoscale are important and the mesoscopic mechanical quan-
tities are stochastic and referred as the apparent properties. The
proposed method can be used in both cases, as it will be shown
in the numerical examples. Then, in order to simplify the writing
of this paper without loss of generality, we use the following termi-
nology. The small scale indicates the microscale and the large scale

indicates either the macroscale or the mesoscale. Moreover, both
the effective quantities, linked to the macroscale, and the apparent
quantities, linked to the mesoscale, are referred as the apparent
quantities.

2.1. Nonlinear homogenization scheme

We consider a microstructure, schematically depicted on Fig. 1,
which occupies a domain Q ¢ R? where d € {1,2,3} denotes the
spatial dimension and where 9Q denotes the boundary of the do-
main Q. We identify the position of the material points by the vec-
tor X in the reference configuration and by x in the deformed
configuration. Those two vectors are related through:

x=X+u, (1)

where u is the displacement vector of a material point. We intro-
duce the deformation gradient tensor F at point X defined by

F:%:l—&-vx(u), 2)
where 1 is the second-order identity tensor and Vx(-) is the gradi-
ent operator according to the reference configuration. Domain Q,
characterizing the microstructure, is composed of N, hyperelastic
phases defining the N, domains Q" with r € {1,...,N,} and such
that Q = Uf’;Qm. The constitutive equations of each phase can then
be characterized by strain energy density functions " according to
the right-hand Cauchy-Green strain tensor C = F'F such that the
local strain energy density function y of Q can be written as

Np

(X, 0) = 1"X)y"(C), (3)

r=1

where [V is the characteristic function of domain Q" which is equal
to 1 if X € Q" and 0 otherwise. Let us denote by P and S the first
and second Piola-Kirchhoff stress tensors respectively, related by
P =FS. In the Lagrangian description, the local constitutive equa-
tion is given by (see e.g. [20])

U
§=25+X.C). (4)
In the present work, we consider a compressible Neo-Hookean
model (see [20] for instance) described by the following potential

#(€) = 5 Hlog())? ~ log() + 5 u(er(€) - 3). 5)

where log(-) indicates the natural logarithm, | = det(F) is the volu-

: B > p :
metric change, 4 = g4—; and ft =545, in which E and v are

Fig. 1. Model problem: small scale and large scale structures.
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