Comput. Methods Appl. Mech. Engrg. 254 (2013) 114-125

journal homepage: www.elsevier.com/locate/cma

Comput. Methods Appl. Mech. Engre. =

Contents lists available at SciVerse ScienceDirect

Preconditioned iteration for saddle-point systems with bound constraints arising

in contact problems

A. El maliki P, M. Fortin?, J. Deteix ?, A. Fortin **

2 GIREF, Département de mathématiques et de statistique, Pavillon Vachon, 1045 avenue de la médecine, Université Laval, Québec, Canada G1V 0A6
b Ecole Nationale de Commerce et de Gestion de Casablanca, Université Hassan Il Mohammedia-Casablanca, Beau site, B.P 2725 Ain Sebad, Casablanca, Morocco

ARTICLE INFO ABSTRACT

Article history:

Received 1 May 2012

Received in revised form 31 August 2012
Accepted 10 October 2012

Available online 5 November 2012

We introduce a new algorithm, which we shall call Mixed Iteration, or by the acronym Mix-It, for the
solution of saddle point problems arising from minimization problems under equality and/or inequality
constraints. Such constrained problems are found in many applications and we shall be specially inter-
ested in contact problems in solid mechanics. The algorithm is however general and can be applied to

other situations. We present a real saddle point algorithm in the sense that the primal variables and
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of the proposed method.

Lagrange multipliers unknowns are solved simultaneously. The effectiveness of the proposed method
for large-scale simulations is improved by a block preconditioner and an adequate treatment of inequal-
ity constraints. The block preconditioner involves the solution of two subsystems associated respectively
with the primal and the dual variables. We present some numerical results to illustrate the performances

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Although the algorithms that we shall describe are quite general,
our motivation will be contact problems in solid mechanics. A real-
istic simulation for a three-dimensional contact problem in linear or
nonlinear elasticity, as described in Section 4, implies the solution of
very large saddle point systems for which efficient iterative methods
capable of dealing with equality and inequality constraints are badly
needed. Several approaches have been developed such as incremen-
tal methods [1,2] and mathematical programming techniques as in
Nguyen and de Saxcé [3]. Other techniques take different forms such
as penalty methods [3], Uzawa-type methods (see [4]) and projected
gradient methods (see [5-8] and the references therein). These
methods generally iterate on the dual problem (the Lagrange multi-
pliers) and each iteration requires the solution of the primal system.
For large contact problems, this is very time consuming since at each
iteration, the system associated to the stiffness matrix has to be fully
solved. Such contact problems can also be solved efficiently using
algorithms based on an active set strategy combined with multigrid
methods as was done by Wohlmuth and coworkers [9,10]. Many
other efficient contact algorithms have been developed in the past
few years. We refer the interested reader to [11-14]. We propose
an iterative approach to saddle point systems where the primal
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and dual variables are solved simultaneously. Our method can be
seen as an improved version of the discrete Arrow-Hurwicz’s meth-
od introduced in [4]. We refer to the comprehensive review of Benzi,
Golub and Liesen [15], for a discussion of saddle-point algorithms.

The key ingredient is to employ this variant as a preconditioner
for the Conjugate Gradient Method or the Generalized Conjugate
Residual (GCR) algorithm as described in Eisenstat et al. [16]. An
appropriate treatment of inequality constraints is then added
through a projection step. We thus obtain a what we call the Mixed
Iteration with projection method (P-Mix-It-GCR). The choice of the
GCR method is motivated by many factors and we shall come back
to it.

Mixed formulations (primal-dual variables) lead to symmetric
and indefinite systems. In the case of nonlinear elasticity, described
in Section 4, the symmetry can be lost when deformation-depen-
dent pressure loads are present or when the variation of the nor-
mal vector is included in the stiffness matrix.

The GCR method is a non symmetric variant of the conjugate
gradient (CG) method. It is flexible in the sense that is allows var-
iable preconditioners. It was shown in [17] to be equivalent to
FGMRES, the flexible version of the GMRES method. When treating
inequality constraints, we found that GCR which can be applied to
non symmetric and indefinite systems natural to implement,
which was not the case for GMRES.

To reduce storage requirements of the GCR method, the trun-
cated version GCR (m) is employed, where m is the number of
direction vectors being kept in the GCR method. We therefore
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use only the most recently computed direction vectors. The con-
vergence properties of this method can be found in Ref. [16].

A specific preconditioning technique is introduced to accelerate
convergence. It involves the approximate solution of two subsys-
tems associated respectively with the primal and the dual vari-
ables. In our applications, the (HP) iterative method recently
proposed in El Maliki et al. [18] is used for the primal variables.
This method is very efficient when solving linear systems associ-
ated with stiffness matrices arising from the discretization of
mechanical problems by quadratic elements.

Finding an efficient preconditioner for the block associated with
the Lagrange multipliers (the Schur’s complement) is a more diffi-
cult task. Some promising avenues are investigated in this paper
but the optimal choice is still an open question.

An outline of the paper is as follows. The Sections 2 and 3 are
devoted to the presentation of our iterative methods and precondi-
tioning techniques. In Section 4, we shall then present the contact
formulation. In Section 5, we present some techniques to approxi-
mate the stiffness and Shur’s complement matrices. Numerical re-
sults are presented in the last section.

2. The mixed iteration algorithm with equality constraints

Let us start from a quadratic programming problem.

. 1
infco—g) 5 (Kv, v) = (f, v) (1)

where (.,.) refers to a scalar product, K is a symmetric and positive
definite matrix, C is the matrix of constraints and v will be called
the primal variable. Introducing a Lagrange multiplier, this can be
written as a saddle point problem,

. 1
inf,supL(v,7) = j(KZ/, v)— (4L, Cv—g)—(f,v). (2)
The optimality conditions of (2) can be written in the following
block matrix form:

T
A= € G- [ ®

A C 0|L4 g
The Lagrange multiplier 2 will be called the dual variable.

It is possible to solve directly the full system (3) but this ap-
proach has important drawbacks. The corresponding matrices are
almost always too large to be solved by direct methods and more-
over the system is indefinite. Its resolution by a direct method
could require pivoting and is difficult by standard iterative
methods.

A very common technique to solve the above problem is the
dual iteration method or Uzawa’s method. Given /y, we solve the
primal problem in u and update /. by

{ Kug =f — C" iy

) (4)
A1 = A+ p(Culy — 8).

The parameter p can be chosen by standard methods, such as the
steepest descent method. Furthermore, this algorithm can be im-
proved by introducing a conjugate gradient variant as in Fortin
and Glowinski [19]. This method is efficient but the cost of solving
for v in (4) can be high. It was soon realized that an incomplete res-
olution was often sufficient. This led to what was called in [19] the
Arrow-Hurwicz’s method.

Ug1 = U + p]k_l(f — Kuy, — CT]vk)
) (5)
Akl = e+ pz(cukH - g)

K-! is some approximation of K~'. This means that linear systems
involving K are not solved with high accuracy. This is the case when

only a few iterations of an iterative method is used. If K-! = K~ and
p; = 1, this falls back on the dual iteration method. If the matrix K is
symmetric, to obtain a symmetric preconditioner, we add a third
step which modifies the displacement unknowns.

uk+% = U+ p1f<71 (f — Kuy - CTZk)
et = A+ Py (Clly — 8) (6)
U1 = Upyy — K1C" (st — )

We shall refer to such an extension, with a small abuse of language,
as being a symmetric preconditioner even if K is not.

The main drawback of this method was the lack of a good pro-
cedure to choose the parameters p; and p,. A way to circumvent
this is to consider the Arrow-Hurwicz method or its full version
as a preconditioner for another iterative method such as GMRES
or GCR.

To do so, let us start with the approximate factorization £DU of
the block matrix F from system (3).

I 07[k oI k'
Fe~| ~ = LDU (7)
CK' I1]lo =S||lo I

where S is an approximation of the Schur complement § = CK~'C"
and K is an approximation of the stiffness matrix K. If K = K and
S =S, we indeed have an exact factorization. Note that:

wouyt— |1 R0 { : 0} 8
o I 0 -§1|[-Cck 1 ®)

which can be used as an approximate solver. When K is symmetric,
we have ¢/ = £T and the full block decomposition F ~ £DLT is
symmetric but indefinite. In this case, the preconditioner can be
combined with the conjugate gradient method or the generalized
conjugate residual method.

Let (ry,,r;) be the residual of the system (3). Applying this
approximate solver is equivalent to solve (ou,s2) = (£DU)™
(ry,, rzk)T which leads to three subsystems, two with the matrix K
and one with the matrix S:

& =K'ry,
8. =S51(Cs —1y) 9)

ou=K"1(ry,, —C'o1) =0 —K'Co..

which is analogous to (6). Dropping £ or i/, we obtain two unsym-
metric preconditioners:

% T -1 j-10T¢-1
=% €| win Du)™ = K= KkmesT (10
- 0 -§1
K o : -1 0
LD = | with D) =|_ e (11)
c -S SIcK' —§1!
Applying (11) yields
ou=K"r
- ug (-12)
3 =51Cou—ry).

which is analogous to (5). For such a preconditioner, it has been
shown by Murphy et al. [20] that a preconditioned Krylov subspace
method converges in two iterations. The infrastructure for the
implementation of this block triangular preconditioner is already
incorporated in PETSC package [21] and was studied by Klawonn
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